
AD-AI4U 126 AUTOMATIC FEATUhE EXTRACTION SYSTEM NO 2(U) PAR
TECHNOLOGY CORP NEW HARTFORD NY J C LEITZ ET AL.
JAN 83 PAR-82-19 RADC-TR-83-22 F306D2-81-C-D034

UNCLASSIFIED F/G 20/6 N

EEEEEEEomhosEI
EEEEEEmhEEohhI
EohEmhhmhEmhEE
EEEohhhEEEEmhE
mhEEEEEEEEohEI

111 1.0 6' LB 2
L 2~

V0 111112.0J

jffj 1.2 ~ 1.6

MICROCOPY RESOLU [ION TEST CHART
NATIONAL BUREAU OF SlANDARDS Afti A

RADC-T-1422

15nil TsdmlI.. mport

AUTOMA TIC FEATURE EXTRACTION
SYSTEM #2

PAR Technology Corporation

John C. Laltz. James L. Cumbler, Midel S. Crone. Robert Fries,
Mihael A. Gennert. Gerald J. Kinn, John F. Iemmer and
Poli M. Lentz

APRM FOR PR RM W IM ALmWM DTIC
^ ELECTE

~JUL6 093

ROME AIR DEVELOPMENT CENTER A
Air Force Systems Command

MOriffls Air Force Bse, NY 13441

88_076 - 131

MEN=-'I

SUbs r ed by the RAC Public Affaire Office (PA) and
is TGeMassble to doe National Tecdutcal, Inforimation Service (VnS).* At NIS
it wil be reas 4le to the general public, Includiag foreign natMG-.

MADC-T-83-22 has been reviewed and Is approved for publication.

APPROVED:

JOHN N. ENT ZMINCER, JR.
Technical Director
Intelligence & Reconnaissance Division

FORt THE CONKANER: ~

JOHN P. RUSS

Acting Chief, Plans Office

If your addrs has changed or if you wish to be removed frou the RADC
wiling list, or if the addressee is no longer employed by your organlzation,
please notify aW (1), Griff is AI NY 13441. This will assist us in
usiatalais a current mailing list.

to a" return copies of this report tnalss contractual obligations or notices (
on a qecific documet requires that it be returned.

UNCLASSIFIED
SCuZRITY CLASS.FICAION OF TNIS PAGE (PWhat Dee ttet.f)

REPORT DOCUMEHTATION PAGE BUEORE COMPLETING PORS

I.' RPORT NUMIEir11 2 GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUMG&

RADC-TR-83-22 _

4. TITLE (mnd SuAbitI) S. TyPE OF REPORT a PERIOO COVE9RED
Final Technical Report

AUTOMATIC FEATURE EXTRACTION SYSTEM #2 22 Dec 80 - 15 Dec 82
. P9RFORMING OG. REPORT HUigER

82-19
7, AUT V J I. CONTR~ACT 00 GRANT" NUM-ll[FS)

John C. Leitz Michael A. Gennert
James L. Cambier Gerald J. Kinn
Michael S. Crone John F. Lemmer F30602-81-C-0034
Robert Fries Patricia M. Lentz

S. PI[RPORMING ORGANIZATION NAM
I
E ANO ACORESS 10. PROGRAM ELE9MENT. PROJECT. TASKAREA & WORK UJNIT NgE)RlS

PAR Technology Corporation 63701B

Seneca Plaza Route 5
32050322

New Hartford NY 13413

ItI. CONTROLLING OFFICE NAME AND0 AO0111993 12. REPORT OATS

Rome Air Development Center (IRRE) January 1983

Griffiss AFB NY 13441
IS. MUNOEROFP AGES

164
14. MONITORING AGENCY NAME 6 ADORESS(II differqt Iro C Ita'oIInd Office) IS. SECURITY CLASS. (o. thl ropeff)

Same UNCLASSIFIED

IS.. OECL ASSIFICATION/ OOWNGRADING

MM SOULE

16. OISTRIBUTION STATEMENT (of this Report)
N/A

Approved for public release; distribution unlimited.

17. csTmou T oN STATEMENT (of the ebMfact anirted in Block 20. It differeit from NOV&")

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Frederick W. Rahrig (IRRE)

II. Kiy WORDS (ComUI n-U .. ere r side Of newees? and Identify by block number)

Digital Image Processing

Feature Extraction
(/ Photogrammetry

Artificial Intelligence

20. AlSTRACT (Continue on reverse side if neceeery And Identity by block number)

2 This report documents the development of the Automatic Feature Extraction
System delivered to the Defense Mapping Agency. This effort has provided

an advanced development model of a semi-automatic interactive system
capable of generating data files to support mapping, charting and geodesy
products from digital source inputs and a flexible test bed to permit ex-

perimentation for addressing the long range image processing requirements

of the Defense Mapping Agency. (

DD o 1473 EOITION OF I NOV 5 IS OSOLTE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Rlsen Dote Eniadm)

.. l i l.

TABLE OF CONTENTS ,

-- 1

SECTION PAGE

1.0 INTRODUCTION. 1-1

1.1 SCOPE 1-1

1.2 BACKGROUNDI... 1-2

1.3 TEST RESULTS 1-3

1.3.1 Scanner/Plotter

Subsystem 1-4

1.3.2 Software Testing. 1-5

1.4 REPORT ORGANIZATION 1-6

2.0 AFES OVERVIEW 2-1

2.1 INTRODUCTION 2-1

2.2 AFES PURPOSE. 2-1

2.3 AFES GOALS. 2-1

2.3.1 Multi-user Facility . . . 2-2

2.3.2 Easily Modifiable 2-2

II

2.3.3 Modularity. 2-2

2.3.4 Independence From Image

Source 2-3

2.4 OVERALL AFES STRUCTURE. 2-3

2.4.1 AFES Hardware Configur-

ation 2-3

2.4.2 UNIX Operating System . . 2-7

2.4.3 Applications Software . . 2-18

2.5 SYNOPSIS OF TOPICAL DOCUMENTS . . . 2-19

3.0 AFES SYSTEM STRUCTURE 3-1

3.1 INTRODUCTION 3-1

3.2 AFES FILE STRUCTURE 3-2

3.2.1 UNIX Files. 3-2

3.2.2 User Directories 3-4

3.2.3 AFES Directories. 3-5

3.2.4 Image Files 3-13

3.3 PROGRAM DEVELOPMENT AIDS 3-16

3.3.1 Video Editor. 3-16

I ii

3.3.2 Documentation Format. .. 3-16

.3.3 Subroutine Libraries. .. 3-17

3.3.4 Include Files 3-19

3.3.5 Window Code 3-19

3.3.6 Program Testing 3-19

3.3.7 Interface to Programs

Under AFES Control. . .. 3-20

3.4 SOFTWARE CONTROL 3-23

3.4.1 Software Control. 3-23

3.4.2 System Update 3-2

3.5 COMMAND STRUCTURE 3-30

3.5.1 Command Syntax 3-30

3.5.2 Modifications to the Shell 3-32

3.5.3 Inter-Processor Communi-

cations 3-34

3.5.4 Command Structure for

Master Processor. 3-36

3.5.5 Command Structure for

Display Processor 3-41

iii

3.6 DOCUMENTATION 3-J42

3.6.1 Document Types 3-42

3.6.2 Documentation Aids 3-46

3.7 AFES ADMINISTRATOR 3-52

3.7.1 Adding AFES Users . .* . 3-52

3.7.2 Maintaining Multiple

Releases. 3-53

3.7.3 Assuring System

Integrity 3-54

4.0 MEASUREMENT EXTRACTION AND

CLASSIFICATION 4-1

4.1 INTRODUCTION 4-1

4.2 MEASUREMENT EXTRACTION. 4-2

4.3 TRAINING AND CLASSIFICATION 4-6

4.3.1 Mean Nearest Neighbor

Cmean-nn)4-8

4.3.2 Condensed Nearest

Neighbor Conds-nn) 4-8

4.3.3 Mahalanebian (mahal). . 4-8

iv

4.3.4 Multivariate Categorical

Analysis (mica). 4-9

4.3.5 Unsupervised Classification

(cluster) 4-9

5.0 SYMBOLIC IMAGE PROCESSOR 5-1

5.1 INTRODUCTION 5-1

5.2 THEORY OF OPERATION 5-1

5.2.1 Preprocessing 5-2

5.2.2 SIP 5-3

5.3 IMAGE REPRESENTATION 5-4

5.3.1 Regs 5-5

5.3.2 Lseg..........5-6

5.3.3 Feats. 5-7

5.4 COMMANDS 5-7

5.14.1 Invoking SIP 5-7

5.4.2 LISP Commands 5-8

5.4.3 LISP Errors 5-8

5.41.14 LISP Quirks 5-9

V

5.4.5 Sip Commands . * 5-11

5.5 PRODUCTION RULES. 5-11

5.5.1 Rule Declaration 5-13

5.6 SAMPLE DIALOG 5-14

5.7 LIMITATIONS 5-16

5.7. 1 Representation

Limitations. 5-16

5.7.2 Rule Limitations 5-17

5.7.3 Number of Regions 5-17

5.7.4 Speed. 5-17

6.0 AFES IMAGE PROCESSING LANGUAGE .. . 6-1

6.1 INTRODUCTION. 6-1

6.2 TABLE STRUCTURES6-1

6.3 IPL COMMANDS. 6-3

6.3.1 Change Processing Image

6.3.2 Change Processing Method

C cpm) 6-3

vi

6.3.3 Mo.dify Method

6.3.4 Current Methods and

Images. 6-5

6.4 CONTROL STRUCTURE 6-6

7.0 PHOTOGRAMMETRIC SOFTWARE 7-1

7.1 INTRODUCTION. 7-1

7.2 THE AFES SYSTEM DESCRIPTION 7-1

7.2.1 System Requirements ... 7-2

7.2.2 Maintaining Stereo ... 7-3

7.2.3 Mensuration. 7-3

7.2.4 Point Positioning .. . 7-4

7.3 MENSURATION PACKAGE 7-5

8.0 SCANNER SUBSYSTEM 8-1

8.1 INTRODUCTION 8-1

8.2 AFES SCANNER SYSTEM8-2

8.3 PHOTOGRAPH SCANNER/VIEWER UNIT . 8-5

8.4 GRAPHICS SCANNER/fl PLOTTER .* . 8-7

vii

8.5 LINE ARRAY CAMERAS. 8-8

8.6 VIDEO PROCESSOR 8-9

8.7 COMPUTER CONTROL SYSTEM 8-12

viii

LIST OF FIGURES

Figure Page

2-1 MASTER PROCESSOR CONFIGURATION. . . 2-5

2-2 FULL-FUNCTION STATION CONFIG-

URATION 2-7

4-1 One Dimensional Classification... 4-4

4-2 Two Dimensional Classification... 4-4

8-1 AFES Scanner System Diagram 8-3

8-2 AFES Scanner/Viewer Unit 8-6

8-3 Video Processor 8-11

ix

1. INTRODUCTION

This document describes the results of the contract entitled "Automatic

Feature Extraction System #2", RADC No. F30602-81-C-0034. It is intended to

fulfill the requirements for CLIN 0002, Data Item 007.

The AFES contract was performed between December 1980 and December 1982.

Under the terms of the effort, a duplicate copy of the testbed image

processing system developed under contract F30602-78-C-O080, including

hardware and software, was assembled and installed at the Defense Mapping

Agency Aeronautical Center in St. Louis, Missouri. This report will describe

the system and its capabilities.

1.1 SCOPE

The AFES is designed to be a testbed for evaluation of semi-automatic and

computer-assisted techniques for automated production flow processes. Its

intended input sources include National Sensors and LANDSAT imagery, and its

functional capabilities are expandable to permit its use as an experimental

testbed for feature extraction. Initial AFES capabilities are applicable to

the extraction of planimetric, cultural, and landscape characteristics as

required for production of Digital Feature Analysis Data (DFAD).

The system's hardware configuration provides for input scanning and

conversion, image storage and retrieval, interaction with multiple softcopy

displays, feature delineation, and output plotting of feature data. The major

hardware subsystems include a host processor which performs overall system

control, data acquisition and storage, and certain computationally intense

procedures; a scanner/plotter subsystem which allows input of image data from

film and opaque source materials and generates graphics plots; and a display

substation which allows direct user interaction with the imagery.

I-I.

The APES Software includes a large collection of system and applications

modules which support a wide variety of functions. The operating system

supports a multi-user environment, a tr -structured file system eminently

suited to image processing, modular software structure, a complete software

control system for system and applications programs, program development aids,

documentation aids, and interfaces to all peripheral devices and subsystems.

Applications software provided with the AFES supports pixel measurement

extraction; pixel classification via statistical pattern recognition; image

preprocessing, enhancement and filtering; image warping, resampling, and point

positioning; and symbolic image processing via a rule-based inference system.

1.2 BACKGROUND

The development of technologies for exploitation of digital imagery is

mandated by DMA transition to all-digital source materials by the late 1980's.

A number of research programs preceding and concurrent with the AFES

development have addressed the use of digital imagery for the generation of

various DMA products.

The RADC Image Processing System (IPS) is a predecessor to the AFES which

provides an interactive image processing capability for research related to

feature extraction and classification from reconnaissance sensor imagery. The

earliest work leading to the development of the IPS consisted of the

integration of a number of pattern recognition software modules in the late

1960's and early 1970's to form the On-Line Pattern Analysis and Recognition

System (OLPARS). The system was configured on a CDC-1620 computer with

associated peripherals.

In the early to mid 1970's an image-processing front end to provide

multivariate vector data for input to OLPARS was developed on a PDP-11/20

minicomputer. Software included a custom designed operating system,

executive, and large library of application functions most Of which were

written in assembly language. This system was initially called the Image

1-2

Feature Extraction System (IFES). A separate effort called Spectral

Combinations for Reconnaissance Exploitation (SCORE) added multispectral

software to IFES, and the combined system was renamed Digital Interactive

Complex for Image Feature Extraction and Recognition (DICIFER). This total

package was a display-oriented minicomputer system dedicated to developing,

testing, and evaluating techniques for imagery exploitation. It was used for

processing of black and white and multispectral reconnaissance photography,

side-looking synthetic aperture radar imagery, forward-looking infrared

imagery, LANDSAT imagery, and several other types of two-dimensional array

data. The addition of OLPARS structure analysis and classification logic to

DICIFER resulted in a complete pattern analysis capability based upon image

data. This system has since become known as the Image Processing System

(IPS).

The current IPS hardware configuration is the standard AFES configuration

(less the scanner/plotter subsystem), consisting of a PDP-11/70 and PDP-11/34,

with mass storage, special processing, and display peripherals appropriate to

support the AFES software. Current contractual efforts such as Advanced

Pattern Recognition (F30602-80-C-0319) are devoted to enhancement of AFES

target recognition capabilities. The AFES control structure is being modified

and additional applications software is being added to apply statistical

pattern recognition to region measurements. Edge-based image segmentation

algorithms are being added, and the AFES Symbolic Image Processor (SIP) is

being expanded to accommodate more flexible interaction between symbolic and

statistical pattern recognition algorithms.

1.3 TEST RESULTS

This section details the results of the AFES #2 Final Acceptance testing,

which was performed during the months of August and September, 1982. Since

the software was a copy of that developed and tested under the original AFES

contract, the AFES #2 tests consisted of executing selected AFES software

processes which were considered to be capable of demonstrating the proper

1-3

operation of the hardware components. The testing was performed during two,

one-week periods, with the test procedures concentrating on the following

hardware modules:

1. Scanner/Plotter Subsystem Testing.

2. Image and Graphics Displays.

3. AP120B Array Processor.

4. Threshold Technology Voice Recognizer.

5. Color Camera System.

The proper operation of the main computer systems was assumed to be indicated

by the successful execution of the processes used in testing the specific

system components listed above.

All tests on the system, exclusive of the scanner/plotter subsystem, were

completed successfully during the first week of testing. Several minor

problems were encountered with the scanner/plotter subsystem that required

some remedial work followed by a second week of tests. The following

subsection discusses those problems.

1.3.1 Scanner/Plotter Subsystem

The testing on the scanner/plotter subsystem continued throughout the

entire two week test period. During the first week several minor problems

were elcountered which were both hardware and software related.

Initial tests that covered interior orientation and servo control were

successfully accomplished. The first problem surfaced when an attempt was

made to remotely control the scanner operation from the PDP-11/70. Although

communication was possible, it was very intermittent and noisy. The problem

1-4

was located in the interface cables between the PDP-11/70 and the

scanner/plotter PDP-11/34. The cables were modified which rectified the

problem.

The second problem was caused by the RP06 disk drive that was dual ported

between the scanner/plotter PDP-11/34 and the PDP-11/70. On the PDP-11/34

side the disk could be written but not read. Initial symptoms seemed to

indicate that the disk had been corrupted so it was regenerated from backup

tape. When this did not solve the problem it was evident that a hardware

problem existed. The trouble was located in the drive itself and repairs were

accomplished.

Having solved the disk problem, a scan was performed. Visual assessment

of the digitized image indicated both skew and stage motion problems. The

source of these problems could not be immediately located within the time

remaining in the first week. Further investigation was performed the

following week and it was discovered that the file on the RP06 in which the

calibration parameters were stored contained incorrect data. It was found

that during previous attempts to solve the disk problems by restoring from

backup tape, an incorrect copy of the calibration data had been used. The

version of the file that was restored was found to contain the parameter file

from the scanner/plotter system at DMA-HTC which was incorrect for the AFES #2

scanner. The correct data was then loaded and the scanner was recalibrated

which solved the problems.

Formal testing was then resumed. Shortly thereafter the floating mark

lamp in the scanner burned out and a new one had to be installed. Following

that repair, resolution tests were successfully performed. However, the

center point was off by approximately five pixels. This was found to be due

to the floating mark being slightly out of calibration. The floating mark was

then recalibrated and the problem was solved.

1-5

The next tests revealed that scanned areas adjacent in the Y axis were

not contiguous. It was theorized that a slight stage calibration problem may

exist so it was then recalibrated. Subsequent scans revealed that, in

fact, had been the problem.

Plotter tests were completely successful. An initial problem occurred

due to an incorrect termination in the data file used for the tests. When the

file was properly terminated the problem was solved.

Particular attention was paid to the plotter pen holder since it had

exhibited a tendency to stick during preliminary acceptance testing. Since

those tests the holder had been repaired and in no instance did this problem

recur.

Early in the scanner/plotter tests an indicator lamp failure occurred in

the Y serve select switch on both the scanner and the plotter. This problem

was found to be caused by the failure of a line driver associated with those

switches. It was repaired and the lamps operated properly.

1.4 REPORT ORGANIZATION

The remainder of this report is devoted to detailed descriptions of the

major components of the AFES. The sections which follow are available on-line

on the AFES as topical documents. A list of available documents may be

obtained by entering the command "doe" with no arguments.

Section 2 is an overview of the entire AFES system, and provides a brief

summary of its hardware and software structure and capabilities. Section 3

describes the utilization of UNIX system facilities, including software

control and on-line documentation. Section 4 is entitled Statistical Pattern

Recognition, and describes the various types of pixel measurement extractors

and statistical classifiers available on the AFES. A logical continuation of

image exploitation is provided in Section 5, which covers the AFES Symbolic

1-6

Image Processor (SIP), which is a rule based inference system for high level

classification of features. Section 6 discusses the AFES Image Processing

Language, which is the primary control structure for image exploitation

experiments. The warping, resampling, and mensuration software are covered in

Section 7, entitled Photogrammetric Software. Finally, Section 8 is a

description of the Scanner/Plotter Subsystem. It is derived from off-line

documentation of the subsystem, which was built under subcontract by Bendix

Research Laboratories. Appendix I lists the user commands available for

execution of AFES applications software.

1-7

2. AFES OVERVIEW

2.1 INTRODUCTION

This section presents an overview of the Automatic Feature Extraction

System (AFES), and serves as a directory to a series of topical documents

which describe the theory and implementation of various system components.

The purpose and general goals of AFES will be described first, followed by

discussions of its overall structure, and finally by a synopsis of the topical

documents.

2.2 AFES PURPOSE

The AFES is an integrated hardware/software complex. It is designed as a

testbed for applying image processing, photogrammetry, pattern recognition,

and artificial-intelligence-derived techniques for semi-automatic map

generating and updating. The AFES has been designed as a complete man-machine

system for image understanding and efficient receiver of algorithms. The AFES

possesses facilities for easily reimplementing, integrating and testing

algorithms developed elsewhere, as well as new algorithms. The system is

capable of handling both digital and film sources. It also contains elaborate

facilities for image input and storage, and can be operated by persons

unfamiliar with computers. Accordingly, strong emphasis has been placed

throughout its development on such things as modularity, user interfaces, and

software support. These goals will be discussed in more detail in the next

section.

2.3 AFES GOALS

The AFES design specifications require that it be a multi-user system

which is easily modifiable, modular, and independent of image source.

2-1

2.3.1 Multi-user Facility

Multi-user implies that expensive resources can be fully utilized by

sharing among users. This has been accomplished by use of a work station

configuration, in which each user has, for his exclusive use, interactive

devices and minimal computational capabilities appropriate to his task.

Resources shared with other users, including mass storage devices, special

types of processors, and image input devices, are controlled by a central

processor which is linked to a number of work stations.

2.3.2 Easily Modifiable

Easily modifiable means that:

* new algorithms can be easily developed and easily incorporated into any

part of the system.

a new algorithms can easily use all techniques and algorithms which have

been previously implemented on the system.

* new processes can be easily structured from a variety of algorithms and

techniques.

2.3.3 Modularity

Modularity implies that:

" Previously programmed techniques are available to new algorithms.

" Processes may be reconfigured from various modules so that these

processes can execute on various processors available within the system.

Different flavors of processing can be easily developed.

2-2

o System design, implementation, maintenance and modification may be clean
and efficient.

2.3.4 Independence From Image Source

AFES must be independent from its image source in order to retain

compatibility with all present and future image sources which it may be used

to exploit. While each new image source may require a different hardware

device to digitize the image data and different software modules for image

queing and formatting, the result of the input process will be images in

standard AFES file format. The AFES file format has been designed for maximum

versatility, and accommodates both single channel and multichannel imagery.

Eventual compatibility with all available digital imagery is an AFES goal.

2.4 OVERALL AFES STRUCTURE

This section will present more detailed information about the AFES

workstation configuration, software system, executive control, program

development aids, and applications software.

2,4.1 AFES Hardware Configuration

The AFES hardware can best be described in terms of three main

categories; these are the master processor, the workstation configuration, and

the scanner-plotter subsystem. The master processor functions as the vehicle

for program development, data storage, and many processing operations. The

workstation concept provides for a set of dedicated interactive devices for

each user. The type of workstation used depends on the operator's task. In

general a number of workstations will be linked to one master processor which

allocates shared resources among users. The workstation configuration

provides the main human-machine interface for the accomplishment of image

exploitation. The scanner-plotter subsystem is dedicated to the Input/output

of source image data, as well as cartographic data generated from processed

2-3

imagery. The scanner-plotter subsystem is included in Figure 2-1 as part of

the master processor configuration. However because of its unique hardware and

importance it will be discussed separately.
i

J

2.4.1.1 Master Processor

The master processor is a PDP-11/70 minicomputer with a variety of I/O

devices, storage units and processing resources (Figure 2-1). Input images

may be provided on magnetic tape, and tape drives are provided for access and

copying of image data. The design includes a scanner-plotter subsystem which

is linked to the processor via a communication link and a dual-ported disk

system so that film, map, or chart data may be digitized and stored on the

disk, and utilized by the system as needed. A second large capacity disk

system stores source images and intermediate results of image processing

functions executed on the master processor. Processing resources include, in

addition to the capabilities of the PDP-11/70, a floating point array

processor which is used to perform certain types of tasks involving numerical

computation on large blocks of data.

Associated with the master processor is the Program Development Station (PDS).

The PDS consists simply of a CRT terminal which is linked to the master

processor. It is designed for the user who simply wishes to edit and compile

programs, and to execute programs on the master processor for which image

display output is not needed. The multi-user, time-sharing operating system

used for the master processor can accommodate a large number of these

terminals without noticeable degradation in response time.

2.4.1.2 Work Station

The hierarchy of work stations provided seeks to match the hardware

configuration used with the task to be performed. The types of workstations

have been termed the Full Function Station (FFS) and the previously

discussed Program Development Station (PDS).

2-4

z I- a

0

76

40

to

00

LM =ham=,

The FFS (Figure 2-2) provides the full complement of image processing and

interaction capabilities. A color display system is included, on which the

user may view source imagery or the results of processing operations. Two

high resolution monochrome display systems and a stereo viewer are provided to

allow display of stereo imagery. Each display system has a trackball,

hardware cursors with function buttons, and overlay memory to accommodate

operator interaction and display of auxiliary data. A Hewlett Packard Random

Scan Display accompanies the FFS. This will be used as a status display to

provide the user with relevant information, such as status of background

processes and the name of the image that is associated with a particular

display channel. In addition, a Dunn color camera system is interfaced to the

color display so that hardcopy of source or processed imagery is producible in

an efficient, convenient and timely manner. The FFS configuration provides

the environment necessary for integrated testing of image processing functions

and design and implementation of the types of software systems envisioned for

production of digital maps. The display system is controlled by a PDP-11/34

display processor which also provides a minimal processing capability. In

particular, operations which require frequent and/or random access to image

data, but do not perform complex computations are well suited to execution on

the display processor. These may include such things as histogram

computation, contrast modification, edge detection, simple geometric

transformations, and other preprocessing or enhancement operations. Image

data may be transferred to and from the master processor via a high speed

parallel data link.

Facilities for operator interaction for the FFS are designed to minimize

the knowledge rtquired to use the system. Commands issued by the workstation

user may refer t) processes which are executed on the master processor or the

display processo-. To simplify operation incoming commands are automatically

sorted by the d'splay pro'essor's command interpretor. Those which run on the

display processor are executed immediately, while others are transferred to

the master processor's command interpretor.

2-6

04

a t

wz

4c4

I-i
-C 3d

00

IL C On a

IL2-7

In general, programs which require operator interaction are executed or,

the display processor. In some cases a single command may start a process on

the display processor which will interact with the user to obtain input data

or parameters, then start a "batch" type process on the master processor to

perform a computation using the user's input data. Most user interaction

occurs via trackballs, cursors, and pushbuttons.

An additional interactive device is a voice recognizer, which may be

trained by each operator to interpret simple vocal commands and issue the

appropriate character strings to the display processor. This allows the

operator to enter commands when both hands are occupied controlling

trackballs.

2.4.1.3 Scanner-Plotter Subsystem

The scanner-plotter subsystem consists of the scanner viewer, plotter

scanner, A/D converter, and PDP 11/ 3 4 controller with dual floppy and RP06

disk drives. The scanner viewer consists of two 9 X 18 inch stages, which

have optics for scanning or viewing images directly. The scanner for each

stage consists of a 102 4 element CCD array with zoom optics and rotation

capability. It will allow a scan of a 1024 by n pixel image with spot size

ranging from 5 to 30 microns continuously. The stages can move at different

rates in both x and y directions , allowing skew, rotation, positioning and

scale change of the scanned image when coupled with the other features. The

grey scale repeatability is one part in 256.

The plotter-scanner is a high accuracy plotter with CCD camera mounted in the

pen gantry for scanning of map data. The system will scan opaque or

transparency maps. The scale and rotation of the map scanner is fixed with

spot size being 80 microns. The plotter can utilize pen scribe. The scan time

for the scanner viewing is 8 seconds for a 1024 by 1024 pixel image, while the

scan time for the plotter-scanner is about 17 seconds.

2-8

The requests for scans are normally initiated from the PDP 11/70 master

processor.

2.4.2 UNIX Opera ting System

The UNIX operating system has been used to provide multi-user time

sharing capability. UNIX provides a convenient file structure which supports

independence from the image source, an important AFES feature. The UNIX

operating system was also designed to support modularity and ease of

development. The "Programmer's Workbench" (PWB) version of UNIX has been used

for AFES. PWB/UNIX provides the following features particularly important in

its application to AFES:

" A hierarchical file system.

" A flexible, easy-to-use command language.

" Ability to execute sequential and background processes.

" The Ned Editor-- a powerful text editor.

" Flexible document preparation and text processing systems.

" Extensive software control capabilities.

" A high-level programming language conducive to structured programming

(C).

" The other programming languages LISP and FORTRAN.

" Powerful system I/O routines.

A number of these features will be described in more detail below.

2-9

2.4.2.1 UNIX File System

The PWB/UNIX file system consists of a highly uniform set of directories

and files arranged in a hierarchical tree structure. Each node in the tree is

either a file or a directory; if it is a directory it may have branches to

lower level nodes. If one considers a node in the directory tree to be a

directory called "dname", then entries in this directory are referred to by a

"pathname", for which the entries in dname would be "dname/namel",

"dname/name2". etc. Here "namel" and "name2" may be directories or files.

The UNIX file system has as its root node a directory containing names of a

large number of other directories, each of which contain a hierarchy of other

directories and files. This provides a systematic organizational structure.

Basic features of the file system are:

" Simple, consistent naming conventions. Names may be absolute or relative

to any directory in the tree.

" Mountable and de-mountable file systems and volumes.

" File linking across directories.

* Automatic file space allocation and de-allocation transparent to the

user.

* Flexible file and directory protection modes. Directories and files are

uniquely associated with a particular user. Both image and user files

are coded as to access privileges, with the code indicating read, write,

and execute privileges to the file owner, a specified group of users, or

to all users. This access control provides file protection and assumes

an important role in the UNIX software control system.

2-10

" Facilities for creating, accessing, moving, and processing files,

directories, or sets of these in a simple, uniform way.

* Treatment of each physical I/O device, ranging from interactive terminals

to main memory, as a file, allowing uniform file and device I/O.

2.4.2.2 UNIX Shell

The UNIX command language, called the Shell, is used to implement the

AFES "Image Processing Language", which controls file access and user

processes, and greatly simplifies execution of image processing functions.

The capability for background processes provides for a smoother process flow

in execution of statistical pattern recognition routines on images, since some

processes, such as classification, can be run in the background while the

operator is using the terminal for other routines.

The UNIX Shell language also allows the user to define a wide variety of

variables which may be used to simplify command structure. For instance, a

user wishing to use the paradigm support software for statistical pattern

recognition may define a "working image" with which he wishes to experiment.

The pathname of this image is saved as a variable which may be accessed by

Shell routines which use the working image as input. Thus the user need not

specify a possibly long and complicated pathname each time he executes a

command which operates Gn the working image. Two files, .afesinit and

.envinit, set up the proper AFES environment for a particular user, by

initializing many of the necessary shell variables.

2.4.2.3 System I/O Routines

UNIX provides standard input and output files which are used whenever

possible. The user may specify any file or terminal to be used as standard

input or output, or may transfer the output of one program directly to the

input of another using these standard I/O facilities.

2-11

2.4.2.4 AFES Software

The AFES software has been designed to support the features outlined in

Section 3. This involves a discussion of the AFES file system, programming

access and aids, and applications software.

2.4.2.5 AFES Commands

It is appropriate to mention AFES commands at this point as they will be

referred to in the sections which follow. A more detailed discussion can be

found under Applications Programs.

AFES commands are executable files which can be written in the Shell

command language or "C". They are organized in "menus" according to the

function they perform, and constitute components of the AFES "Image Processing

Language". It should be noted that most menu commands with the exception of

those in the "meas" section of the menu are shell files. The topical document

IPL describes the Image Processing Language in detail.

Command language routines, written in the Shell command language, may in

turn start up other system and application programs. These routines may be

written in LISP, FORTRAN, "C", or shell. This capability greatly simplifies

command string structure, since the command language routine can execute the

proper sequence of executable modules based upon a simple set of flags and

arguments provided by the user.

2.4.2.6 AFES File System

The AFES file system is based on the standard UNIX file system, and many

AFES features are achieved through careful organization and implementation of

file structures. As in UNIX, the AFES file system also makes use of a root

directory "I", appropriately called the root. Entries in the AFES root

directory include, among others, working directories for temporary storage of

2-12

image files during processing sessions such as "N", "/u", which branches down

to personal user files, "/usr", which contains system routines, and "/tmp",

which contains temporary files. The root node directories most important to

AFES are the /u, and working directories. The /u directory will be described

in sections which follow.

2.4.2.6.1 AFES Directory

The AFES utility and applications programs are all contained in a user

directory which has the pathname "/u/afes". There are a large number of

directories under /u/afes; they include the following:

cmd Program development commands

bin AFES administrator commands

incl$z Include files for the current testbed system, release no.

$z

bin$z Master processor command language (Shell) routines,

release no. $z

system System utilities such as control commands for the

interprocessor link

lib$z Master processor library routines, release no. $z

obj$z Master processor executable modules, release no. $z

smlib$z Workstation (PDP-11/34) library routines, release no. $z

2-13

smobj$z Workstation (PDP-11/34) executable modules, release no. $z

smbkg$z Files which are to be run in background at the

workstation, release no. $z

secs All files placed under AFES control via the "addfile"

command

smbin$z Workstation command language (Shell) routines, release no.
$z

Library routines are subroutines used by many programs, which are combined

with the calling program to make an executable module. Object modules are

compiled versions of main programs. Separate library and object directories

are provided for the master processor and the workstation processor. While

the workstation routines are maintained by the same software control system as

the master processor routines, they are compiled in a slightly different way

due to differences in the capabilities of the processors.

The topical document "afeslayout" provides a more detailed description of the

layout of directories for the AFES testbed. Successive updates of the AFES

software, incorporating new programs and changes to existing programs, give

rise to new release numbers. "$z" is a Shell variable which contains the

current release number. Hence "/u/afes/lib$z" is the pathname to master

processor library routines for the latest AFES release.

2.4.2.6.2 User File Directory

Each user has a personal directory containing programs under development.

These are usually maintained under the "/u" root node. While this directory

may contain only names of various files, it more often contains names of other

directories which divide the user files into categories.

2-14

2.4.2.6.3 Image File Directory

The image directories lead to a tree of image files. The sequence of

directory nodes in the working image directories are designed to be a highly

organized record of all processes which have been executed on an image. This

directory structure may be reviewed with the "examine" command, which allows

the operator to interactively examine the directory structure. Automatic

restart capability is provided by storage of all status information in the

file structure so that a particular processing environment can be

automatically invoked when a user logs onto the system.

2.4.2.7 AFES Programming Aids and Practices

The goals of modularity and easy modifiability are attained through

careful structuring of programs, attention to cc.sistent documentation,

utilization of system, library and interface routines, standard image formats,

and strict software control.

2.4.2.7.1 Program Structure

AFES applications programs are written in a way which allows maximum

flexibility and versatility. Standard software interface routines are used

whenever possible, such as the "automatic window" code, described in a later

section. Subroutines are written to provide as much application independence

as possible, so that they can be used by a large number of programs, thus

minimizing the number of subroutines.

2.4.2.7.2 Software Interfaces

One common type of user program anticipated in use of AFES as a test-bed

system is the measurement extraction routine which uses as its input the

intensity of a single pixel, or perhaps the intensities of pixels contained

within a small window surrounding a single pixel. The user is usually

2-15

concerned largely with the routine which operates on the pixels within the

window, and would rather not have to worry about the mechanics of moving the

window throughout the image. Routines of this type may perform, for example,

smoothing, edge enhancement, or texture description operations. To meet this

need AFES provides a number of include files, referred to collectively as the

"automatic window code", which may be Inserted in the user window processing

code. This automatic window code interprets the program parameter string to

obtain names of input and output files, sets up memory allocation for input

and output image data, sets up the line-by-line and point-by-point loops which

move the window through the image, and performs all necessary data conversions

to input and output data. Thus anyone wishing to add new measurement routines

has little more to do than to code the algorithm for a single window in the

image and insert the appropriate include files. This allows for expandability

in the system. Considering the number of computations, window code also

executes rather quickly. Typical times for a 512 by 512 image range from

under one minute to twenty minutes.

2.4.2.7.3 Utility Subroutines

The AFES subroutine libraries include a large number of functions which,

although they are more likely to be used by more advanced programmers, save

considerable programming time and help eliminate duplication of effort, and

support the modular design of AFES. These routines have applicability in the

areas of file handling, display interaction, error handling, and numerical

operations, and Include the following:

file locate and open image header and data files

data convert output data from a given type to an arbitrary

format as specified in output image header

2-16

input perform I/O for single lines of image data

matrix perform matrix addition, multiplication, and inversion

display initialization of DeAnza display registers; cursor and

trackball interaction

error standard routines for printing error messages.

2.4.2.7.4 Standard Image Format

The increasing variety in types of image sensors available for

acquisition of mapping information has lead to a concomitant increase in image

formats. AFES achieves a good deal of its versatility be reducing image data

from all types of sources to a single, standard image format. Thus the image

processing operations are independent of image source, and can accommodate

both current and future forms of imagery.

2.4.2.7.5 Software Control

AFES has an extensive source code control system which is maintained by

the AFES Executive. This system utilizes two UNIX components, the Source Code

Control System (SCCS) and the "Make" command, to assure system integrity.

2.4.2.7.5.1 SCCS

SCCS maintains a record of all changes which have been made to a

program's source code, making it possible to reconstruct any earlier version

of a program at any time. Each time a user modifies one of his programs, he

is required to provide a short description of the reason for the change. This

generates a historical record of a program's evolution. The AFES user

directory (/u/afes) contains source code for each program which is part of the

AFES system, thus preventing proliferation of multiple copies of a program

2-17

which may or may not be identical.

2.4.2.7.5.2 Make Command

The UNIX "Make" command utilizes file interdependency data in performing

recompilation of programs which have been modified. When a program is placed

under AFES Executive control, the author specifies the names of all

subroutines or other files which the program utilizes. This information is

recorded in a "Makefile" placed in the same directory as the program. When a

file is modified the AFES Executive can poll all of the Makefiles to find and

recompile all programs which depend or, the file which has been modified.

Usually a recompilation is performed, giving rise to a new "release" of AFES,

after a number of programs have been changed.
p.

2.4.2.7.6 Documentation Access and Aids

Consistent and standardization of documentation has been stressed in

AFES. This facilitates both development and use of documentation within the

system. First a brief description of the types of documentation available will

be provided, followed by a look at some of the AFES/UNIX capabilities which

are used by programmers in production of documentation. The topical documents

"afesdoc" and "prog_dev" descrijes these features in detail respectively.

AFES provides several standard commands which allow the user to access

online documentation for programs under AFES control. As mentioned

previously, AFES commands are arranged in menus according to the function they

perform. Entering "menu" at a terminal will produce a list of the various

menus available. These will be explained further under Applications Software.

To gain a list of actual commands in a particular menu, the user should enter

"menu <section>".

2-18

Every AFES menu command has a short usage information file accessed by

executing the command "help <command name>". This command prints out (on the

user's CRT) the proper argument sequence for the command, indicating which

arguments are optional and which are required. The topical document,

"cmd syntax" describes syntax for AFES commands, and should be referenced

prior to using the help command.

An on-line AFES manual is also maintained for menu commands, and may be

accessed by typing "man <command name> afes". This provides the user with

extensive documentation about the program, including argument list, functional

description, files used, and related commands or routines.

Another important source of information is that available through the

"doe" command. Document files are present for many AFES files including main

programs, subroutines and include files. Menu commands may or may not have an

associated "doe". Document files are essential because they are comprised of

the type of detailed system information about a program or file necessary for

making modifications. A document may be obtained by typing "doe <file name>".

The bottom level documentation is provided with the program source

listing. In addition to frequent comments interspersed within the code, a

standard documentation section, called a boilerplate, is provided at the

beginning of the program. This lists the author's name, the files,

subroutines, and macros used, a program description, the compile string, etc.

and is most helpful in making subsequent modifications.

Program development aids are provided which allow the user to produce the

necessary documentation for his program with a minimum of time and effort

spent. The documentation commands "doe" and "man" operate on text files by

invoking the UNIX text processing function "nroff". This function performs

extensive text formatting operations including automatic numbering of

subsections, printing of headings, indentation, etc. The AFES command,

"newfile", gives the user a standard format for production of the nroff source

2-19

files, so that the documentation can be written by simply "filling in the

blanks" in a prestructured document outline.

The source code documentation is written using the same type of

prestructured "boilerplate" used for man and doc files. The programmer simply

fills in all of the information required, including his name, files used,

program description, etc. Only the in-line comments provided with the source

code are left up to the programmer's personal style.

A number of other program development aids have also been provided. Aids

such as the "add to afes" command allow the user to easily add new programs to

the AFES software control system, and prompt the user to provide the

information necessary to create entries in the proper Makefile. Commands are

provided which allow a user to access an existing AFES program, edit it, and

record the changes in the appropriate SCCS file, namely the "editfile" and

"deltafile" commands.

The result of the documentation support is that all AFES documentation is

produced in a consistent format, and the ease of documentation encourages the

programmer to produce the documentation concurrent with his development of the

program. This helps to avoid the last-minute large-scale documentation

efforts which so often plague delivery of large software systems.

2.4.3 Applications Software

AFES is a pwerful image processing system. Commands in the menu driven

system are an AFES user's key to image exploitation in the testbed

environment. These constitute the Image Processing Language. Most commands

are accessible at both the FFS and the PDS. However some menu sections are

appropriately available at one workstation only. For example, since the color

and monochrome display monitors are interfaced to the FFS, display commands

are only available at this station. A summary of AFES commands can best be

given by briefly examining the menus.

2-20

tst -AFES test-bed commands, including many used in statistical

pattern recognition.

input - Commands used to enter images Into the AFES environment

prog - Program development commands

misc - A list of miscellaneous commands

meas - Measurement extractors

mens - Mensuration commands

class - Classifiers

symb - Symbolic processing commands (accessible on the 11/70 only)

admin - AFES administrator commands (accessible on the 11/70 only)

disp - Display commands (accessible on the 11/34 only)

init - Display initialization commands (accessible on the 11/34

only)

itt - Commands which make use of Intensity Transformation Tables

(ITT's) on the DeAnza display (accessible on the 11/34 only)

A listing of the contents of those menus is provided by Appendix I.

2-21

2.5 SYNOPSIS OF TOPICAL DOCUMENTS

This section provides a list and brief description of topical documents

provided with AFES which are designed to provide a top-level view of system

design and capabilities. Each document gives a theoretical treatment of the

particular techniques involved, discusses their discrete-data version where

appropriate, and describes their implementation in AFES.

Topical Documents

progdev - Program development under AFES

afeslayout - Layout of AFES directories

auto wndw - A guide to construction of code using the AFES automatic

window.

cmdsyntax - This is a description of the syntax for AFES commands

inelfile - The nature and use of include files

e - Describes usage of Rand (Ned) editor

keys e - Description of control functions for the Rand (Ned)

editor

afesovrv - Automatic Feature Extraction System -- An Overview

afes doc - An explanation of the documentation available on the

AFES

2-22

applprog - Applications Programming Under AFES

afes shell - Description of AFES modifications to the shell

dstfile - A description and use of the display status file.

sip - An overview of Symbolic Image Processing on the AFES

afesipl - An overview and description of the Image Processing

Language usage and syntax.

afessys - AFES System Structure describes in more detail the file

system software, control system, command structure, and

documentation.

im comp - Image Compression describes various techniques for image

compression, and AFES tools for their implementation.

*11*1 The following topical documents are not on-line, and are

available in hardcopy only.

Image Enhancement and Preprocessing - A theoretical discussion of image

enhancement and preprocessing, followed by its

implementation in AFES.

Measurement Extraction and Classification - This describes the AFES

support and applications software for statistical pattern

recognition.

Warping and Resampling - The Warping and Resampling paper gives a

theoretical background for various types of image warping

processes, and describes the programs provided in AFES for

warping and image registration.

2-23

3. AFES SYSTEM STRUCTURE

3.1 INTRODUCTION

This section explains the philosophy behind and implementation of the

software system, as structured for AFES, at the system programmer level. The

following topics are covered in detail in the succeeding subsections:

" File Structure

" Program development aids

" Software control

" Command structure

" Documentation system

" AFES administrator

A strong motivating force in the development of the AFES system has been to

provide a framework from which a user/programmer can test concepts and/or

develop programs in a simple manner, while at the same time, to encourage him

t6, follow good software development techniques. These techniques, which

include such things as modularity, structured programming, user interfaces,

on-line documentation, etc., while highly desirable, can make life tedious for

a programmer. So, it is one of the aims of AFES to help him follow these good

programming techniques with a minimum of a priori knowledge and effort. This

goal has been accomplished, as will be described fully, by the union of many

of the commands available within UNIX/PWB into highly mobile user

environment made possible by the UNIX command language, called the Shell.

3-1

3.2 AFES FILE STRUCTURE

The motivation behind the design of the AFES file system has been to

provide a file handling environment (be it source files, image files, or

whatever) in which the programmer is relieved of as many of the cumbersome

tasks such as opening and closing files, maintaining directories, insuring

file integrity, etc., as is practicable. The AFES file system accomplishes

this task by combining many of the UNIX functions such as the shell, SCCS,

Make, to form an integrated environment for file handling.

3.2.1 UNIX Files

From the point of view of the user, there are three kinds of files in

UNIX: ordinary disk files, directories, and special files.

3.2.1.1 Ordinary Files

A file in UNIX may consist of almost anything a user might want to place

in it. Files of text consist simply of a string of characters terminated by

an EOF character. If the text were to be displayable, for instance, newline

characters would demarcate physical lines in the display.

Binary programs are sequences of words as they will appear in memory when

the program is loaded. Image files consist of a string of unsigned 8 bit

bytes which describes the intensity of pixels to be displayed on one of the

image displays. The structure of a file is controlled by the programs which

use them, however, not by the system.

Filenames, as supported under UNIX, must be 14 or fewer characters in

length. Under AFES they must be 12 or fewer characters, the first character

must be either an upper or lower case alpha character and no control or

special shell characters may occur in the name.

3-2

ILI

3.2.1.2 UNIX Directory Structure

In order for the system to provide linkage between a physical file and

its name a directory structure is maintained. The UNIX system has a

hierarchical directory structure with the character "" being the designated

separator between levels. The "/" , as a limiting case, refers to the root

directory from which all searches for a path name beginning with the "/"

start. For example, to find the file named "file.c", whose complete pathname

is "/u/mike/bin/file.c", the system would search "root" for a directory named

"u". It would then search "/u" for a directory named "bin", etc., until it

either successfully locates "file.c" or fails at some point in the search. If

the pathname does not begin with "/", then the system will begin the search in

the user's current directory which can be determined by the "pwd" command.

When a user logs in, his current directory will be set to a unique one

assigned to him by the system manager. When he executes the "ed" command his

current directory may be changed to the argument given, ie. "ed /u/mike/tmp"

or to his login directory if no argument is given, ie. "ed". A new user will

be given a login directory ie. "/u/mike" which contains a "bin" directory as a

lower node ie. "/u/mike/bin". The importance these directories play in

command execution will be discussed in section "5".

3.2.1.3 File Ownership

In UNIX the mapping provided by a directory entry between a file name and

the physical file is referred to as a "link". In the case of a normal user,

any file he creates will have a link to it which is associated with his login

name. He will determine the privileges associated with that file at the time

of creation. He may change the read/write/execute privileges via the "chmod"

command for three categories of user: owner, group, world. A non-directory

file may appear in several directories under possibly different names, each of

which constitutes a link of equal status to the file. With the correct

privileges the file may be modified by referring to any of the links to it.

3-3

Under most circumstances a file would only have one link to it and would be

modifiable only by the creator of the file. Only the owner of a file, or the

"super user" may change the privileges to a file.

3.2.1.4 Special Files

Under UNIX, program output which might normally be to a disk file may be

redirected to any device, such as a terminal, line printer, etc.. UNIX makes

this possible by the use of special files. There is a special file associated

with each device in the /dev directory. One would write to a device by

writing to the special file the same way as to any other file. A similar

capability exists for redirection of input.

3.2.2 User Directories

The important directories to the general UNIX user are as follows:

/u - contains directories for each login name
/bin - contains system commands
/usr - contains system routines, commands, and libraries
/tmp - provides directory for creation of temporary files

Two additional directories of importance to image processing in general and

AFES specifically are:

/i - permanent storage for image files

/w - temporary storage for image files

3-4

3.2.3 AFES Directories

All files which are a part of the AFES software environment, whether

source code, "include file", object code etc., are maintained by the AFES

administrator in one of the subdirectories of "/u/afes". Two releases of afes

directories are maintained by the administrator to support the concept of on-

going development in the higher release while maintaining a workable lower

release for operator use. When an AFES user logs on, a shell variable "$z"

will be set to the number of the release to which he is linked. For each

directory below which has "$z" as the suffix to the name there will,

therefore, be two directory names which differ only in the substitution value

of "$z". In the case of the "afes" 11/70 library directories, for instance,

their names might be "/u/afes/lib8" and "/u/afes/lib9", where "9" is the

release in which on-going development takes place. The layout of the AFES

directories is very important to the total picture of program development, so

the following description of the directories will be useful in the sections to

follow:

3-

3-5

(Each level of indentation represents the next level in the
hierarchical directory)

U
afes

bin
cmd
incl$z
lib$z
obj$z
bin$z

modules

manuals
manA Z
mana 1
manm z

documents
docA Z
doca-e
docf_j
dock o
docp-t
docu z

smlib$z
smobj$z
smbin$z

modules

smbkg$z
smcmd

scs
cmd
files
manAZ
mana-1
manm-z
docA Z
doca_e
docf-j
dock o
docp-t
docu-z
fort
macro
make
incl

3-6

The following Is a description of the directories and their contents.

" /u/afes/cmd

This directory contains the program development commands for AFES. A

list of these commands is available via the menu command with "prog" as

section name. All of these programs are modifiable only by the AFES

administrator, and they are all shell command files.

" !/afes/bin

This directory contains the AFES administrator commands. Available via

"menu admin" and modifiable and executable only by the AFES administrator

or other shell routines.

" /u/afes/incl$z

This directory contains the Makefile and include files for the testbed

system. All routines referencing AFES include files do so via

-I/u/afes/incl$z in the compile string.

" /u/afes/lib$z

This directory contains the Makefile and object files necessary to build

the AFES 11/70 library. It is built by the administrator via the

makelib command and installed in /usr/lib/libafes$z.a . This makes it

accessible by using the -lafes$z switch in cc or ld commands.

" /u/afes/obJ$z

This directory contains the object modules necessary to build the testbed

executable modules in /u/afes/bin$z/modules. The moduleq will be remade

only by the administrator via afesupdate. The user may r4odify the source

3-7

files via editfile and deltafile , but the object files must be remade by

the administrator.

" /u/afes/bin$z

The directory for all testbed routines. All routines in this directory

are intended to be shell commands which may or may not interface to an

executable module in the /u/afes/bin$z/modules directory.

" /u/afes/bin$z/manuals

Since manuals are very release oriented, there is a copy for each

release. This directory contains sub-directories each of which contains

nroffed versions of the man files. Each directory represents an

alphabetic range based on the first character of the manual name.

" /u/afes/binz/documents

Doc files are also release oriented so a copy of each nroffed file This

directory contains sub-directories each of which contains nroffed

versions of the document files. Each directory represents an alphabetic

range based on the first character of the document name.

" /u/afes/bin$z/modules

These are the actual testbed or measurement extraction command modules

which are built by the user. They are only updated by the administrator.

" /u/afes/smlib$z

This directory contains the Makefile and object files necessary ta build

the "small" library for the 11/34. It is built by the administrator via

the makelib command and installed in /usr/lib/libsmalliz.a . This makes

3-8

it accessible by using the -lsmall$z switch in cc or Id commands.

o /u/afes/smobj$z

This directory contains the object modules necessary to build the 11/34

executable modules in /u/afes/smbin$z. The modules will be remade only

by the administrator via afesupdate. The user may modify the source

files via editfile and deltafile , but the object files must be remade by

the administrator.

o /u/afes/smbin$z

The directory for all 11/34 shell commands. This directory contains all

commands in the testbed menu on the 11/34. These commands are down-

loaded to the 11/34 by Make to the directory /u/afes/bin$z. This

directory is in the search path for commands for all users on the 11/34.

o /u/afes/smbin$z/modules

The directory for all 11/34 executable modules. The modules will be

down-loaded to the 11/34 by Make to the directory /u/afes/bin$z/modules.

This directory is in the search path for commands for all users on the

11/34.

/u/afes/sccs

This directory contains only directories as shown above. All files which

are placed under AFES control via the addfile command are stored by SCCS

as g-files in one of the sub-directories. The files with no suffix go in

cmd; those with ".d" in one of the doe directories; ".m" in one of the

man directories; those with ".f" in fort; those with ".s" in macro; those

with ".k" in make; those with ".h" In Incl; and those with all other

suffixes go in files. The akefiles in the system refer to the g-files

3-9

found in the appropriate sces directory for source code dependency.

" /u/afes/smbkg$z

This directory contains dummy command names which are down-loaded to the

11/34 by Make to the directory /u/afes/smbkg$z. This directory is in the

search path for for all users on the 11/34. The shell knows to execute

these commands in background on the 11/70.

" /u/afes/smcmd

This directory contains program development command which are down-loaded

to the 11/34 by Make to the directory /u/afes/cmd. This directory is in

the search path for for all users on the 11/34. This allows a user to

execute commands in the "prog" section of the menu on the 11/34.

3.2.3.1 Source Code

As indicated in the description of /u/afes/sccs, all source code files

(alpha-numeric files) which are placed under AFES control via the addfile

command are stored as SCCS read only files in one of the sub-directories of

/u/afes/sccs. Once a user places one his programs under AFES control he

relinquishes ownership of the file to the AFES administrator. He may,

however, modify the file as required by following the procedures delineated in

section 4 on Software Control to follow. For on-line information concerning

source files the programmer may execute "doe prog dev".

3.2.3.2 Object code

The term objectcode in the AFES environment refers to the file produced

by the compilation of a source code file before entering the link/load stage.

This type of file is produced by using the "-c" switch with the C compiler.

In the AFES directories libz, objz, smlib$z, and smobj$z this intermediate

3-10

stage of compiled code is maintained by Makefiles. The reason for this

arrangement will also be explained in section 4.

3.2.3.3 Executable Code

The next level of file we refer to is executable code which is produced

when the appropriate object code files and libraries are linked and external

references are resolved. These files are maintained in the AFES directories

bin$z/modules, and smbin$z/modules. The files in bin$z/modules are not

executed directly by the user but may be executed by shell routines such as

"classify".

Executable code available only to the AFES administrator differs from the

testbed executable code in that the Makefile in /u/afes/bin maintains the

commands without the intermediate object code stage.

3.2.3.4 Executable Shell Files

These are alpha-numeric files interpreted by the shell command language.

They are maintained by makefiles in certain directories as described above.

They essentially provide the user interface to the AFES environment.

3.2.3.5 Libraries

Due to hardware differences between the 11/70 and 11/34, the library

routines must be compiled differently for the two processors. Therefore, a

library is maintained with two releases for each processor. For information

as to what routines are available and how to include a library in the load

string, the AFES command listlib(lsl) with the parameter afes or small may be

executed. The libraries are maintained in the directories as described above

by the makelib command which installs a copy of the archive file libafes$z.a

and libsmall$z.a in the /usr/lib directory. This allows a user to link to the

library by typing -lafes$z or -lsmall$z in his compile/load string.

3-11

+_.

3.2.3.6 Includes

The C compiler has a preprocessor which will replace a line indica,-ed by

$include "filei.ame"

with the contents of the file "filename". In AFES. include files must have

the suffix ".h". They are all maintained by makefile3 in the incl$z

directories as described above. Extensive use is made of Includes in the

Window Code which will be described in section 3.3.5.

3.2.3.7 Documents

The term doe file refers to a file which is accessed by the doe command.

This file is release dependent and maintained in a sub-directory of

/u/afes/bin$z/documents as described above. A doe file has a ".d" suffix

which is produced when q user executes newfile to produce a doe file for

either an AFES file or to create a topical document. The version stored under

SCCS control is in NROFF format and is NROFFED before being stored in a one of

the documents sub-directories.

3.2.3.8 Manuals

There must be a manual for each command which appears in one of the AFES

menus. Manuals are produced via the newfile command which will create a file

with a standard boilerplate where the name will be the same as the command

with the suffix ".m" added. This file is release dependent and maintained in

a sub-directory of /u/afes/bin$z/manuals as described above. The version

stored under SCCS control is in NROFF format and is NROFFED before being

stored in one of the manuals sub-directories.

3-12

3.2.4 Image Files

There are two directories in which image files are stored in AFES: /i and

1w. The /i directory is where all permanent image files in afes are stored;

and /w is where all feature extraction and classification processing is

performed. An image stored in the /i directory may or may not have an AFES

image header file associated with it depending on how it was entered into the

directory. In order for an image to be used in the AFES environment it must

be in AFES standard format. The user may accomplish this task via the

enter-image(eni) command. When a user is added to AFES a directory with the

name of his login is made in the /w. All image processing output will occur

under this directory as will be described in section 5. Every image created

in this hierarchical tree will have two files which describe it, a "data"

file, and a "hdr" file whose makeup is described by the doe file for

imagehdr.h. The following items are included in the header:

A. ver nr (2-word integer) - The version number is used to flag changes ir

the header so that programs will not do inexplicable things when using a

file with an old header. Hopefully a program can be constructed to

update the header if this becomes necessary. The current version number

is available under the macro nane "VERNR" in image hdr.h

B. depth (2-word integer) - This is the number of lines in the image.

C. width (2-word integer) - This is the number of pixels in each line.

D. type (short) - This describes the organization of the raster data. The

following types have been defined:

1. Raw data, interleave by pixel - all data for a particular pixel is

in a contiguous chunk of storage.

3-13

2. Feature raster data, interleave by pixel - all data for a particular

pixel is in a contiguous chunk of storage. (The distinction between

the previous two types is archaic and will be removed from future

versions.)

3. Feature raster data, band sequential - all of each component

(channel) is in a contiguous chunk of storage. This may be used for

files intended for the color display.

4. All else. This will include statistics files.

E. n chan (short) - This is the number of channels of image data. The

maximum allowed value of n chan is available under the name "MAX-CHAN" in

image_hdr.h

F. format[MAXCHAN] - (MAX CHAN 1-byte characters) This string gives the

format of the vector elements. Each character in the string may be

'c' (1.byte character data),

's' (1-word short integer data),

'f' (2-word floating point data), or 0 (no more channels).

G. usage[MAXCHAN] (MAX-CHAN l-byte characters) - This gives the usage of

vector components . Each character in the string may be

'f' (feature),

'n' (classifier node),

'p' (position information),

'g' (general non-image information, such as a covariance matrix),

or

'0' (no more channels).

H. 1_marg (short) - This is the number of columns of garbage at left of

image.

3-14

I. r-marg (short) - This is the number of columns of garbage at right of

image.

J. tmarg (short) - This is the number of lines of garbage at top of image.

K. b_marg (short) - This is the number of lines of garbage at bottom of

image.

L. t row (short) -This is the position of the top row of this image within

its source image.

M. 1_col (short) - This is the position of the left column of this image

within its source image.

N. tran type (l-byte character) - This indicates the type of transformation

used to get from the photo coordinates. Recognized values are

'a' (affine),

'pt (projective),

I (1st order polynomial),

'2' (2nd order polynomial),

'3 (3rd order polynomial),

4 (4th order polynomial), and

'5' (5th order polynomial). The maximum allowed number of

transformation parameters is available under the name "TRAN SIZE" in

image_hdr.h .

0. tran parm[TRANSIZE) (TRANSIZE 2-word floating point numbers) - These are

the parameters of the transformation from the photo coordinates.

P. scale[4] (2-word floating point numbers) - Scale factor for polynomial

transformation

3-15

3.3 PROGRAM DEVELOPMENT AIDS

Program development aids within AFES are geared to make a programmer's

task as pleasant as possible while encouraging him to develop disciplined

programming techniques. To aid in the development of a program are UNIX/PWB

features: a context video editor, the structured C language, standard error

and I/O, system libraries, to name a few. AFES has added many features in the

area of program development, such as commands to initialize a file with

standard documentation formats (boilerplates) to encourage documentation,

additional AFES libraries, "Window Code" (which handles all overhead and file

manipulation for feature extractors), a simple program testing environment and

easy integration of programs into the AFES environment.

3.3.1 Video Editor

UNIX supports a command-driven line editor called ed which is useful in

some applications. In addition to this editor, the RAND context editor is

available to programmers via the e command. This powerful editor allows the

user to view a full screen of text while editing the file. This makes the

concept of filling out preformatted documentation (boilerplates) possible.

The editor is used by several of the AFES commands to facilitate documentation

of files and other required items. Some useful tools of this editor include

support for multiple file windows, global changes, interface to external

filters, and many manipulative commands. For detailed Information as to its

usage, refer to the on-line documents for "e" and "keyse".

3.3.2 Documentation Format

As mentioned above, all documentation required in AFES is preformatted.

The execution of certain AFES program development commands automatically

"r with the correct boilerplate. The newfile command

3-16

brings in the boilerplate for producing a source file in a particular

language. The boilerplates for source files are associated with the suffix of

the file and are maintained in the /u/afes/bln directory in the following

files:

afesdoc - C documentation
featdoc - C routine to be written using window code
shelldoc - shell file documentation
lispdoc - lisp documentation
fortdoc - Fortran documentation

macrodoc - assembler documentation

After creating the source routine, the user will be asked if he wishes to

create documentation. If he answers yes, then a boilerplate for producing the

appropriate documentation is entered into the editor. The file
/u/afes/bin/manual is for manuals and /u/afes/bin/document is for doe files.

The newfile can also be used later to create documentation files.

3.3.3 Subroutine Libraries

The UNIX system provides a number of subroutines to aid in program

development. In addition to these subroutines are many which have been added

by AFES. The "cc" compiler will search the system "s" library automatically

for subroutines. To cause the search of additional libraries the programmer

must specify the "-lname" argument, where name is the name of a library to be

searched for a subroutine. The following is a brief descriptien of the

libraries available, their contents, and the compile string required.

3.3.3.1 System Library

This library contains subroutines which allow the user the mo3t basic

entry level into the UNIX operating system. The routines In this library

allow him to manipulate the file system, fork and execute process, determine

system or file status, set and catch interrupts and errors, etc. In addition

3-17

it provides a set of math functions and some basic string manipulation

subroutines. No switch is necessary to cause this library to be searched.

3.3.3.2 String/error/sys Library (-Ipw)

This library contains three sets of subroutines, the string set, error

set, and sys set. The string set is a comprehensive set of alpha-numeric

manipulation routines. The error set consists of general-purpose error

handling, signal-setting, and signal-catching, and clean-up routines. The sys

set of subroutines provides interfaces to system calls that process error

conditions and call fatal(). In addition, a few functions which are not

availa'le elsewhere are provided.

3.3.3.3 Input/Output library (-iS)

This library is a portable I/O package which offers the convenience of

automatic buffer allocation and output flushing where appropriate. It is, in

most cases, the preferable library for I/0 since it is system independent

where the system library is not. It is somewhat less efficient, however, due

to buffering of I/O.

3.3.3.4 Write Library (-lwrt)

This library consists of an interface to syswrite that handles all error

conditions.

3.3.3.5 Afes 11/70 Library (-lafes$z)

This library consists of some general purpose routines, image processing

routines, image header routines, and an error subroutine which should be

called by any AFES C subroutine which generates error messages.

3-18

3.3.3.6 Afes 11/34 Library (-ismall$z)

This library consists of subroutines which may be called by routines

which are intended to be run on the 11/34. It consists of matrix manipulation

routines, display routines, cursor routines, histogram routines, and the error

routine.

3.3.4 Include Files

The include files available in AFES consist of, among other things, the

files necessary to support the Window Code package. This package enables one

to construct a feature extraction routine. In addition there are include

files to describe hardware in the system, such as, the DeAnza link and

displays. For a list of all the include files one may execute the

match-files(mtf) command and enter the pattern: *.h

3.3.5 Window Code

The Window Code (as described fully in section 2 of the topical document,

"Program Development Under AFES") enables a programmer to interface an image-

processing routine with a minimum of effort. Essentially, one writes a

section of code which processes a window of image data and surrounds it with

the AFES include files which provide all the linkage to the data and header

for an image and perform all file manipulations for him.

3.3.6 Program Testing

All programs written using the Window Code may be tested prior to

inclusion into AFES by two methods. The first method is to execute the

program with an existing image as input and create an output image. The user

3-19

may then display the output image or examine the image data directly. The

second method is to move the load module to his personal "bin" directory under

$C which is searched by the shell. The user could then enter the name of the

command, be it a measurement extractor or classifier, into the method file

along with any required parameters (mitting the input and output file names).

He could then execute the ext-measures(xms) command in the case of a

measurement extractor, or train in the case of a classifier. The system will

find the user's version of the file in his directory and execute it as if it

were already integrated into AFES. The same technique could be used if it had

already become part of AFES but needed modification. No other user would be

effected until the changes were complete and the user had entered the changes

into the system.

3.3.7 Interface to Programs Under AFES Control

The primary commands enabling a programmer to place a file, subroutine,

or command under AFES control, are located in the "prog" section of the AFES

menu. The following is a list of these programs as they appear in the menu:

3-20

The following commands are available for afes program
development:

* General Informational Commands *

help - gives syntax required to execute a UNIX/AFES
command based on the syntax description
in section 5

afestext (txt) - gives brief description of AFES file

taken from the information entered by the
user when the file was first added to AFES
via the "addfile" command

man - gives detailed description of either a UNIX
or AFES command. Includes explanation of
switches and other parameters.

doe - gives program documentation for afes files

and other topical items describing AFES.
menu - gives listing of available commands in AFES

*** Basic File Inspection Commands ***

catfile (ctf) - lists contents of AFES file to standard
out put

copyfile (cpf) - get read-only copy of afes file in working

directory
lookfile (Ikf) - look at afes file via the "e" editor

(read-only)

prntfile (prf) - print listing of afes file on line printer
listlib (isl) - list all available routines in one of the

AFES libraries ("1afes" or "small")

0 Miscellaneous File Inspection Commands ***

match files (mtf) - list all afes files matching a certain
pattern

what file (wtf) - list current information about an AFES
command, object, module, include file, etc.
as controlled by the AFES Makefiles.

listdelta (isd) - list all deltas (changes) to afes file to
include version #, date of change,
person making change, and reason for change

differ (dfr) - list the differences between two versions of
AFES file

3-21

*aw File Creation Commands *

newfile (nwf) - create source file with afes standard docu-
mentation based on the filename suffix

add doe (adc) - prepend afes standard documentation to
existing source file

afesnroff(arf) - format text file (used in checking manuals,
and documents)

spell - check spelling in text file
addfile (adf) - place file under afes SCCS control
add to afes (ata) - place file or command (to be run on 11/70)

under afes Make control
addtosmall(ats) - place file or command (to be run on 11/34)

under afes Make control

• File Modification Commands *

editfile (edf) - get copy of afes file for editing in working
directory and lock out other modifications
to the file

deltafile (dtf) - record changes to afes file and delete user
copy and release the file for further
modifications

killedit (ked) - cancel edit session, delete user copy of
file from working directory, and release the
file for modification

backup (bkp) - make a previous version of an afes file the
latest one (all previous versions are
restorable)

modifytxt (mdt) - modify brief description of afes file which
was entered during execution of the addfile
command (this information is used by the
AFES libraries in preparing a description of

available subroutines).
listfiles (isf) - list all afes files user is currently modify-

ing or all afes files user has ever created
or modified

All of these commands operate within the envirornent of "software control" as

will be explained in the next section. They provide the true programmer

interface into the AFES system.

3-22

3.4 SOFTWARE CONTROL

A significant amount of time can be, and usually is, lost in any software

development project due to insufficient control of programs during the

development, integration, and subsequent modification cycle. The greater the

number of individuals involved, of course, the greater the impact of poor

program management. In the AFES environment all source files which are to be

incorporated into AFES as an include file, library routine, command, etc., are

first placed under centralized control of the AFES Administrator. There are a

large number of AFES commands to aid in this process which will be elucidated

in a later section.

3.4.1 Software Control

Software control is the mechanism by which AFES accomplishes the task of

maintaining continuity in a dynamic programming environment(testbed). The

mechanics of software control involve centralized file ownership, monitoring

of file editing, and retention of intermediate changes (versions) to filer.

3.4.1.1 File Ownership

With any project where multiple programmers are providing input into the

system, be it system or application programming, one of the major obstacles to

smooth integration is the problem of multiple versions of routines floating

around. Invariably someone needs a routine for a specific application.

Presuming he hears that someone has written such a program, he often cannot

locate the current version. Then if he needs to modify it even slightly he

usually creates a new file. The tendency here is for a proliferation of

special purpose programs. This does rot encourage the programmer to work in a

modular environment. If many people have incorporated a routine into their

routines then the task of update in case of change becomes enormous. One of

the major requirements for system development to proceed at any kind of

3-23

reasonable pace in the above scenario is an immense overall knowledge of the

system by a few individuals. If for some reason these people leave the

project, it may require months for the project to recover.

Centralized file ownership is one of the ways AFES avoids the above

problems. All files which make up the AFES system are owned by the AFES

administrator. They are stored in one of the AFES SCCS directories according

to their suffix as described in section 3.2 of this document. All program

development commands listed in section 3.3.7 access these files in various

ways for the programmer without requiring him to know where the actual source

files are located. He can therefore be sure he has the correct copy of the

file. He also has many commands at his disposal to determine what routines

are available in AFES and gather information about them. He is encouraged to

write routines which may be beneficial to others through provision of an

easy-to-use interface to the two AFES libraries. Easy access to all AFES

files also allows a programmer to explore the software to any depth desired.

The user may place a file under AFES SCCS control via "addfile",

"addto_afes", or "add to small". The "addfile" command merely places the

source file under the afes centralized control in the form of an SCCS file.

The other two commands will execute "addfile" if required.

3.4.1.2 Source Code Control System (SCCS)

Having centralized ownership of files, the next step is to control the

modification of files. This task is accomplished using the PWB product called

the Source Code Control System (SCCS). SCCS stores the original version of a

file and all subsequent modifications to it. Any version of the file can be

produced by applying the modifications or "deltas" (as they are referred to by

SCCS), up to the the version desired, to the original file.

A very important concept in the AFES environment is that of multiple

releases. This is accomplished nicely by SCCS. In AFES two releases are

maintained at all times. The lower release is Intended to be an operational

3-24

release at all times with the only changes being the correction of discovered

bugs. The higher release is where program development is to take place and

may be disabled at times. When a user is added to AFES by the AFES

Administrator he is given a read-only file in his login directory with the

name ".afesinit". This file is executed upon login and every time a shell is

exec'ed. Among other things, this file sets the $z shell variable to a

default release # which is carried through by all the program development

commands. When a file is entered into the AFES system it is assigned an SCCS

Identification string(SID) where the first number is the release to which the

user is linked. The second number is the level of the delta, which is always

equal to "1" initially. During the course of the project the program

development release will become the operational release and a new release, one

higher, will be created. One branch from the last delta in a previous release

is allowed to develop as a programmer sees the requirement. The following is

an example of the evolution of an SCCS file where the file was entered into

the system while the programmer was linked to release 4.

0 4.2.1.2
/

/

0 4.2.1.1

0 ------- 0 -- - --- _ ----- 0-- - -- 0

4.1 4.2 4.3 1 5.1 5.2
release 4 release 5

The history of the above file shows that after it was initially entered two

editfile/deltafile sequences were executed. The program development system

then became the operational system thus version 5.1 was made by the AFES

Administrator via the nextrls command. The programmer then went through the

edit sequence once while in release 5 and two more times while being linked to

release 4. The 5.2 version may have occurred before or after the 4.2.1.1 or

4.2.1.2 versions. The listdelta(isd) command could be used to list all the

deltas or only those in the release to which the programmer is linked. The

3-25I

two releases are totally independent, however.

3.4.1.3 File Editing

When editing a file under AFES control the user always gets the latest

version in the release to which he is linked. If he wishes some previous

version in the release to be the latest he may execute the backup command. He

never loses any of the versions, however. One difference the programmer will

notice between the listing of a file he has retrieved via editfile from the

same version retrieved via the catfile command will be the absence of any date

or time information in the documentation boilerplate. Instead, the programmer

will notice some capital letters which are preceeded and followed by the %

character. These are recognized by SCCS and the appropriate substitutions for

them are made when a listing of the program is requested. They provide the

programmer information as to the version #. the date of the listing, date of

last update, etc.

3.4.2 System update

After a programmer has made changes to a file which is under AFES control

he needs to be sure that the changes are reflected throughout the system.

This is accomplished by the AFES Administrator as will be fully explained in

section 8. Briefly, a file in AFES which is intended to be used in the

system, be it an include file, subroutine, or main routine, must be placed

under AFES Make control. The commands to do this are add-to.afes and

addtosmall.

3.4.2.1 File dependencies

The concept of file dependency means that one entity in the system is

dependent on one or more files in the system. Whenever any of these other

files is modified the entity needs to be updated in some manner. The entity

3-26

may be no more than a file which contains the contents of two other files; in

case of a change to either of the files, the entity is reloaded with current

versions of the files. The entity may behowever, a complex executable module

which is dependent on a number of include files, library subroutines, and

other source files. If any of these files change the module must be

recompiled and loaded.

3.4.2.2 Make command

The Make command in UNIX/PWB provides a mechanism by which the system can

be kept up to date in a semi-automatic manner. The AFES Administrator is the

only one who actually executes this command and he does so indirectly via the

afesupdate or tstbed make(tst). These routines move around In the AFES

directories and get an updated copy of the Makefile for the directory and then

execute the Make command. There are Makefiles for each of the two releases of

AFES maintained. The following is an excerpt from the makefile for the "obj8"

directory as an example:

3-27

0 tMakefile
will make all the object files in /u/afes/obj$z
0 This is a release dependent makefile and all programs
are dependent upon shell variable $z for release I

CC =Ibin/cc -q -0
FC =Ibmn/cc -0 -12
LIB =/u/afes/lib8
INCL =/u/afes/incl8
CI4D =/u/afes/sccs/cmd
FILES =/u/afes/sccs/files
FORT =/u/afes/sccs/fort
BIN =/u/afes/bin
OBJ =/u/afes/obj8
PROG = /u/afes/cmd
APLIBS =-lV -1
WINDOW =/u/afes/obj8/WINDOW-iLIB /u/afes/obJ8/WINDYdINCL

update :makeall

makeall ::WINDOWINCL
WINDOWINCL: /U/afes/incl/image_hdr.h /u/afes/incl8/wndw init.h

/u/afes/incl8/wndw _proc.h /u/afes/incl8lwndw -fin.h
/u/afes/inc18/wndw buff.h /u/afes/incl8/wndw read.h
/u/afes/incl8/wndw -next.h /u/af'es/incl8/wndw-write.h
/u/afes/incl8/wndw-tidy.h /u/afes/incl8/wndw end.h
/u/afes/incl8/in Iconv.h /u/afes/inclB/out-canv.h
echo "">WINDOWI9CL

makeall ::WINDOWLIB
WINDOWLIB :/u/aFes/libB/ifv slz.o /u/afes/lib8/if loc.a

/u/afes/lib8/if r hdr.o /u/afes/lib8/if-w-hdr.o
/u/afes/lib8/er:ror.o
echo "">WINDOWLIB

inakeall ::lapl.o
lapl.G $(FILES)/s.lapl.c $(WINDOW) $(INCL)/image _hdr.h

$(PROG)/copyfile lapl.c
$(CC) -c lapl.c -I$(INCL)
-rm -f lapl.c

makeall ::efilt.o
efilt.o :$(FILES)/s.efilt.c $(LIB)/s read.o $(LIB)/s write.o

$(LIB)/If open.o $(LIB)/flush ~hdr.o $(LIB)/errFor.o
$(PROG)/cjpyfile efilt.c
$(CC) -c efilt.c -I$(INCL)
-rm -f efilt.c

3-28

The purpose of this Makefile is to keep the object code up to date for lapl..

and efilt.o. The Makefile in bin$z will load the object module with

appropriate subroutines and libraries. The two are maintained separately for

clarity. The lines at the beginning are comments as are any lines preceeded

by the # sign. Next are a list of macro definitions which may be substituted

in the body of the Makefile with the $(NAME) string, where NAME is the string

to the left of the "="1 in the macro definition. The first executable line of

the Makefile is always made if no argument is given, so it is a convention of

AFES to have a dummy line there which is dependent on "makeall" which is

dependent on all the items defined in the Makefile. When "make" is executed,

all items are checked and updated as required. The single colon indicates

dependency and the double colon allows for a continuation of dependencies. In

the case of lapl.o, it is dependent on the SCCS source file for lapl.c, the

WINDOW macro, and the include file image hdr.h. If any of these change the

make command will execute all of the lines following the line of dependencies

uj to the next item. In this case it will get the current copy of lapl.c,

compile it and then remove the file lapl.c. In the case of efilt.o, it Is

dependent on the SCCS source file for efilt.c, the afes4 library routines

s read.o, s-write, if open.o, and flush-hdr.o. The make will proceed as with

lapl.o.

3.4.2.3 Placing a Command Under AFES Make Control

As mentioned earlier the two commands which allow one to place an item

under AFES make control are "add to afes" and "add to small". These complex

commands are dependent on the highly structured AFES directory layout. These

commands allow one to start with either a high level item such as a command or

at a lower level such as an include file. If one starts with a command, the

SCCS files will be searched for the main routine or shell file as appropriate.

If not found the routine "addfile" will be executed automatically for the

routine. The user will then be asked questions such as file dependencies and

the same process will be repeated for all lower level routines. Finally the

Makefiles associated with the command will be modified automatically and the

3-29

user will be prompted to add appropriate help and menu entries. If a user

wishes to modify the makefile entry for any file he may execute add to afes or

add tosmall again for that file and the makefile entry will be replaced.

3.5 COMMAND STRUCTURE A

There are many command categories in the UNIX/AFES system, with the added

complexity of multiple processors. The primary UNIX feature used to solve

command problems is the UNIX shell. All command searching is accomplished by

the shell, which not only functions as a terminal command interpreter, but

which may also take as input a program written in shell syntax. The shell

plays an important role in making the AFES command environment clean and easy

to use. Currently, the command linkage between the 11/34 display processor

and 11/70 host computer is provided by the DeAnza link. The link supports

remote display commands and transfer of image data between processors, as well

as, execution of commands remotely.

3.5.1 Command Syntax

In the Unix system there are some general principles followed in the

syntax used in command generation. However, there are contradictions and some

inadequacies which the following AFES syntax will resolve.

All the commands in the afes system are of the Unix form:

command name parameter...

The following symbols have special meaning in describing the command syntax

via help, or man:

3-30

< > The angle brackets are for grouping items

together and have the highest priority.

[) The square brackets indicate to the user than
all flags or parameters enclosed are optional
as a group.

This is the exclusive-or operator which

is used to show the operator when only one
parameter or group of parameters in a given
set is allowed.

() If a comment is required for increased understanding
it will be enclosed in parenthesis. They should be
avoided if possible.

The "dash" alone means the command should
read from standard input.

-a The "dash" immediately followed by one or
more characters represents a flag which

the user must type exactly as shown. The
terminator for the flag is a space or left
angle bracket.

-a<nam> This is the symbol for a flag "-a" followed
immediately by the user's input for "nam",ie.
-afilel . where filel is the name or a file
to be processed.

name An item offset with spaces or "< >" is a

parameter which the user must enter his
response to, such as in the preceeding example.

For the current release all parameters and flags must be entered in the order

as shown in the help command. The following examples are given to aid in

understanding the syntax rules:

3-31

cod parm1 parm2
cmd [parml parm2)
cmd parml parm2]
cud [parml] parm2 a error *

(since the command cannot tell
whether it is parameter one or two if
only one is entered.)

cmd -i -j<name> parml
cmd [-i<name>] [-J] parm
cmd [<-i name>] parm (name is required with the -I flag)
cmd -1 l: -r
cmd <-i [-z<blocks>] [-s<size>] > 1 <-o [-z<blocks>]>

3.5.2 Modifications to the Shell

Several changes have been made to the Interactive UNIX shell to adapt it

for use by the afes system. These changes have mostly been made to allow the

afes system to maii.tain shell variables and to use the inter-processor link.

The AFES shells are based on ISC version 3.40 shell but have been

upgraded to ISC version 3.45. Additional space has been allocated for parsing

(':' operator in expressions) to allow the use of longer strings.

An additional feature has been added to the file scanning procedure in

the shell. Besides accepting ':' and ';' as legal delimiters, the afes shell

also accepts '%'. When a file to be executed is found in a directory which is

delimited by a '5', the progran itself is not run. Instead, the name of the

program is stored in shell variable I and a program named 'interface' in that

directory is executed. The use of this feature in the shell is to specify

commands which, when typed on the 11/34, should be handled by executing the

program of the same name on the 11/70. The transferring of the command to the

11/70 and taking care of the output is done by 'interface'.

3-32

Afes software is dependent on the values of various shell variables

including variable $z which contains the current afes release and variable $x

which has the path of the current working image. When certain afes programs

are run, the values of these shell variables in the top level shell must be

changed. This is handled by forcing 'next' commands on the shell. After the

shell executes an 'afeslink' command (also known as 'link') the shell forces a

'next $C/.afesinit' and after a 'chg_wrk' (also 'cw') the shell forces a 'next

$C/.envinit'.

The following commands have been added to the shell to support the afes

Image Processing Language(IPL):

cpi photo view frame

cpm method id

vrb [-3

They allow the changing of current processing image, current processing method

and detail of error messages respectively. In detail, the following shell

variables are changed:

for cpi,

$s - set to processing photo

$t - set to processing view
$r - set to processing frame
$x - set to $q/$s/$t/$r
$y - set to $x
$p - set to contents of file $x/.spectral

for cpm,

$w - set to processing method

The "vrb" command functions much like "opt" in that it determines the level of

detail of afes error messages an operator will receive. It sets the shell

variable n to accomplish this. "vrb -" will give the most detailed output and

"vrb" the least detailed.

3-33

Some ether shell variables which are used by afes are variables $D and

$H. Variable D is used to store the current date in a form used by some afes

programs and variable H is used to store the name of the afes error file used

to store error output for programs executed across the link. The afes shell

also has an expanded accounting file output. The full command is written to

the accounting file rataer than just the program name. This will allow users

to recover lists of commands they have executed. If a person would like to

repeat a series of commands or use a similar series on a different image, he

does not have to depend just on memory.

There is a special version of the afes shell called 'transh' which is

used for commands sent across the link with the 'tran' command. This shell is

always given one command to execute and is not expected to read commands from

the terminal. All references to typing out a prompt or typing out the message

about mail have been removed along with the check for logout after being idle

for 15 minutes (it is never Idle). This version of the shell uses a different

startup routine C/etc/tran.init) from the usual shell (/etc/sh.inlt). Also an

extra character is expected prepended to the argument of the '-c' switch.

Rather than let the shell decide if it is the login shell, the shell is

considered to be the login shell (variable F set to 1) if the first character

in the '-c' argument is a space (or anything except a zero) and not the login

shell if the first character is a zero.

3.5.3 Inter-Processor Communications

As mentioned In the preceding section, most of the changes to the shell

were in support of the inter-processor link between the 11/34 and the 11/70.

The 11/34 is the display station where the user may use the DeAnza displays

and any commands available on that processor. All commands in the "tst"

section of the menu are executed on the 11/70 based on the user's current

working method and image. If he executes one of these commands from the

11/34, the mechanism is such that It is started up in background much as if he

3-34

had been on the 11/70 and executed the "run in bkg(rib)" command. He will

then be notified by mail when the process is complete and may examine the

status via the "bkg" command.

The primary routines which accomplish the link are the "tran" and "Ind"

commands. The tran command formats the request and assumes the identity of

the user executing a "tran -c". On the other side of the link the process is

started by the "Ind" command which executes a shell with the same privileges

and identity as the initiator of the command. A routine called "get udata"

was added to the system to determine user identity.

The tran command passes a structure block across the link which is

decoded by "ind" for execution. The type of information is: command,

parameters, error file, user information. The tran -c command saves the

log info returned via the getudata call in p->loginfo which Is part of the

p->name block. If there is a third argument field to the "tran" command , it

is taken as a file name on the other side by "Ind" to which stdout and stderr

are to be redirected. The Ind routine will fork a version of the shell in

/bin/transh which assumes the identity given in the loginfo block via the

logpost() function. If there is no fourth argument to the "tran" command then

the shell will be started with $F = 1 which is like a login shell. Otherwise,

if there is a fourth argument to the "tran" command, the shell will then be

started with $F=O so some of the initialization in the .afesinit will not take

place unnecessarily for this command string. To save time, the /bin/transh

does a next for /etc/tran.init instead of /etc/sh.init. The two commands

which take care of the "tran" details for the user are "modlink" and "shlink".

The "shlink" forces the shell to perform like a login shell with all shell

knowledge. The "modlink" is faster but has more limited knowledge.

Besides command execution, the tran command also allows the user to

transfer a file in either direction across the link; and to see if a file on

the other processor is readable, writable, or is a directory.

3-35

I

3.5.4 Command Structure for Master Processor

The commands available to a user depend upon the sh.init shell command

which is executed when the user logs in and when a shell is exec'ed. This

file has been modified so that .afesinit is executed if found in the user's

login directory. For AFES users, it is present and therefore executed. One

of the things done by .afesinit is to set up the $X shell variable which is

used by the shell to determine which directories to search when a command is

entered. The ".afesinit" file is as follows:

set z = 8
set X = ":$B:/u/afes/cmd:/bin:/usr/bin:/u/afes/bin$z:"
if $G = 0 set X = "$X/priv:"
set u = "/u/afes/biniz"
set v = "$u/modules"
set q = "/w/$L"
if $F = 1 then

set o = c
if ! -d "$q" mkdir $q
if I -d "$q/tmp" mkdir $q/tmp
set H = $q/tmp/.small
if "$S" I= transh then

if "$A" : "" then
$v/accnt name : Aendi f

endif f
next -a $C/.envinit

endif
next

As was discussed in a previous section the "$z" shell variable is set to the

release to which the user is linked. For afes users the shell searches the

following directories for commands: current directory, user's personal bin

directory, the AFES program development directory, the system bin directory,

and the system users bin directory, and the AFES testbed directory. Given the

order of search, it is possible for AFES or any other user to have his own

version of a system command such as the "man" command.

3-36

The following shell variables are set at login, any time a shell Is

exec'ed, or after afeslink:

$u - afes test bed directory
$v - afes modules directory
$q - user's image work directory

The following are only set at login or after executing chgwrk:

$o - default display is color
$H - directory for stdout or stderr for remote commands
$A - account file name for accounting system

If the shell were a login shell then ".envinit" is executed after ".afesinit".

This also happens any time the chg_wrk command iP executed. This is a copy

the ".envinit" shell file:

if -r $q/.photo then
set s = <$q/.photo

endif
if -r $q/.view then

set t = <$q/.view
endif

if -r $q/.frame then
set r = <$q/.frame

end if

if -r $q/.curmethod then
set w = <$q/.cur method

endi f

set x = "$q/$s/$t/$r"
set y - "$x"
if -r $q/.spectral then

set p = <$q/.spectral
endif
next

The following shell variables are set by ".envinit":

3-37

i____________________
~.+

$3 - current working photo
$t - current working view
$r - current working frame
$w - current working method
$x - path to current working image
y - path to Image for statistical processing
$p - spectral type of current working image

3.5.4.1 Shell Interfaces to User Programs

The UNIX shell is really the executive for the AFES system. Being a

powerful command interpreter, it allows for the support of various paradigms

without the expense of a great deal of the project's development time. Since

our control code can, for the most part, be written in this high level

language, modifications are more easily made. The two paradigms currently

being developed for AFES are: statistical pattern recognition, and Artificial

Intelligence. The user has the concept of a currert working environment when

he logs in. The shell is initialized to reflect this environment as described

above. This environment is maintained whether the user is logged in to the

11/70 or the 11/34. Since the input to the shell in this case is the

terminal, this is considered the foreground environment. The user may run

shell command files which we refer to as the Image Processing Language(IPL) in

background which set up a different environment but do not modify the

foreground. The IPL will be covered in detail in section 6.

3.5.4.2 Command Types

The program development commands, which were listed in section 3.7, are

available to the programmer at all times. The menu command is available to

lead the user to commands he may execute.

3-38

The following command sections are available via the
menu command:

tst - Afes test-bed commands
input - entering images into the afes environment
prog - Program development commands
misc - Hiscellaneous commands
meas - measurement extractors
trans - image transformation commands
class - classifiers
symb - symbolic processing commands
admin - Ares administrator commands

The type of commands in each of these menus will described in the following

sections.

3.5.4.2.1 tst

These commands allow the user to enter images for experimentation, enter

or modify a working method, change working image or method, define measurement

sets for training, train a classifier, classify the image, examine the outputs

of the process tree, clean up previous output, run a process in background and

monitor its status, get runtime information for a command, change processing

method or image, and execute symbolic processing. The commands allow for

small changes such as the addition of a new region without having to

recalculate measurements for existing regions. These shell files execute

modules in the /u/afes/bin$z/modules directory as required.

3.5.4.2.2 Input

These commands allow a user to enter an image into the afes format from

either the disk or Landsat tapes. This imagery can be either monochromatic or

polychromatic; monoscopic or stereo.

3-39

..i ..,,,a l/ ...i I 1. .

3.5.4.2.3 prog

These commands make up the program development commands covered in

section 2.

3.5.4.2. 1; misc

These commands are a group of general purpose commands which may aid the

user in link usage, file examination, or debugging.

3.5.4.2.5 meas

The term "measurement extractor", in the statistical pattern recognition

paradigm, is any measurement which is applied to a sample of the data to be

classified. For image processing, measurements are not made on individual

pixels but on a window of these pixels with the purpose being to reduce noise.

The goal of statistical pattern recognition is to accomplish a separation in

measurement values between visually distinct areas of the image, which are

referred to as classes, ie. trees, field, development, etc. Measurement

extraction is based on the user's current working method as will be described

in section 6.

3.5.4.2.6 trans

These commands allow a user to execute a number of transforms on the rows

and columns of a image, such as: fft, fast-hadamard, etc.

3.5.4.2.7 class

This menu contains classifiers which may be entered into the current

working method file and trained if required and executed via the "classify"

command.

3-40

3.5.4.2.8 symb

These commands are available to the user only after executing "sip",

which is the rule-based symbolic processor.

3.5.4.2.9 admin

The AFES administrator has a number of commands at his disposal which

enable him to maintain the AFES system.

The following commands are available to the Afes administrator:

makelib - make afes library
nextrls - creates next release of afes

inmk - Determines which files are not in Makefile
afesupdate - updates the afes commands via "make".
tstbed make(tst) - update the tstbed commands via "make".
adduser - adds user to afes

(login and type /u/afes/bin/adduser)
rmf - remove secs file
cleanup - removes all deltas from an afes file

makemake - make the makefiles up to date
delta_priv(dtp) - list users with delta privileges to a file
add name(adn) - give user edf/dtf privileges to a file

3.5.5 Comma- Structure for Display Processor

The command structure for the display is similar to that of the 11/70 in

that the shell is initialized via .afesinit and .envinit on the 11/34 when the

user logs in on that processor. A convention has been followed when a version

of a shell command is required on both processors but the code must be

different. The convention is to create a new file with the alpha portion of

the name preceded by the letters "sm". In the case of .afesinit it would be:

.smafesinit. The same convention is followed for some of the directories

maintained by the Make command on the 11/70 but whose executable commands are

"tran'd" across the link to be executed by a user on the 11/34. This Is the

3-41

case with the "tst" section of the menu whose commands are stored in

"/u/afes/bin$z" on both machines but whose code for the 11/34 is maintained in

"/u/afes/smbin$z" on the 11/70. All of this is, of course, transparent to the

user with the exception being that the menus on either system will differ

slightly.

In addition to the menus available on the 11/70, the user has the

following menus available on the 11/34:

disp - DeAnza display commands
itt - Display itt commands

init - Display initialization commands

3.6 DOCUMENTATION

The AFES system maintains multiple levels of documentation on-line, where

each level is geared to satisfy specific needs, from command syntax to

detailed program documentation. The AFES system provides an interface to the

programmer which encourages him to incorporate needed documentation and

relieves him from the task of remembering all the levels required. The end

result will be a system both usable and modifiable without requiring one to

spend an inordinate amount of time Just learning the system.

3.6.1 Document Types

There are a number of different types of documentation in the AFES

system; and the access to this documentation varies greatly depending on the

type. The main documentation for any file will be found internally in the

file. The next level of documentation for a file is called a dec file. For a

list of commands the user has the menus by section. For each command in the

AFES system the user has access to help information. If the help information

is insufficient he may refer to the man file ffor the command. Finally, the

user has access to various topical documents to aid in his development of

3 - 4 2

programs under AFES.

3.6.1.1 Source Code Documentation

The internal source code documentation is required for any source file

under AFES control other than ascii tables, such as menus. A different format

for documentation exists for each type of file depending on the suffix. A

list of the format files for each type was given in section 3.2.

3.6.1.2 Document Files

A doc file is required for every file in the AFES system other than a

shell file which appears in a menu. Shell files which appear in a menu will

only have a man file associated with them. A main C file which is entered in

a menu will have both a doe file and a man file. All other files, such as,

tables, subroutines, include files, etc. will have a doe file.

3.6.1.3 Menus

3.6.1.3.1 PDP-11/70 Menus

The following is a list of the menu files and the directories in which

they are stored:

3-43

/u/afes/incl$z:
menulist - which is a list of the menu sections given to the

user if he executes "menu" without a section name.

menupath - a file used to associate a menu section with the
physical directory in which the menu resides.

menutst - testbed commands

menumeas - measurement extractors

menuclass - classifiers

menuinput - image input into the afes environmenit

menumise - miscellaneous commands

menutrans - image transformation commands

menusymb - symbolic processing commands

/u/afes/bi n:
menuadmin - Administrator commands

/u/afes/cmd:
menuprog - program development

3.6.1.3.2 PDP-11/34 Menus

lu/a fes/smbkg$z:

3-44;

3oo&,.
7,.d, ,.

' '' '

menuamlist - list of the menu sections given to the

user if he executes "menu" without a section name.

menusmprog - program development commands

menusmtst - testbed commands

menumeas - measurement extractors

menuclass - classifiers

menusminput - image input into the afes environment

menusmmisc - miscellaneous commands

menutrans - image transformation commands

menudisp - display commands

menuitt - itt commands

menuinit - display initialization

The user makes entries to these menus via the add-to-afes and add-to-small

commands, but he may also modify any of the menu files via the

editfile/deltafile sequence if necessary.

3.6.1.4 Help Files

The following is a list of the help files and the directories in which

they are stored AFES system:

/u/afes/bin$z:
helplist - This is the help file for all release

dependent commands in UNIX such as found
in the menu sections: tst, meas, class.

/u/afes/bin:
cmds - This is the help files for the entire

UNIX system in which all AFES program
development and administrator commands
are kept.

The help command in AFES tries to find the command in the "helplist". If that

3-45

fails it executes the system help command which searches the "cmds" file. The

"helplist" can be modified by any user via editfile/deltafile if necessary.

The "cmds" can only be modified by the administrator.

3.6.1.5 Manual Files

All of the manual files under AES SCCS control are in NROFF format.

They can be modified in the same manner as any other AFES file. An nroffed

version of the files, per release, are maintained in the /u/afes/bin$z/manuals

directory. The man cimmand will execute the UNIX man command for the default

directory if the user does not specify the afes section of the manual as a

parameter. If the command is not found in the system manuals then the AFES

manuals are searched for the command.

3.6.1.6 Document Files

All of the "doc" files under AFES SCCS control are also in NROFF format.

They can also be modified in the same manner as any other AFES file. A

nroffed version of the files, per release, are maintained in the

/u/afes/bin$z/documents directory. The doc command will cat a copy of the doc

file to standard output(normally the terminal).

3.6.2 Documentation Aids

To aid the user in the creation of all of the documentation required by

AFES there are a number of techniques employed. These include using a shell

interface to bring the correct boilerplate required for all file

documentation, be it source code, doc file, or manual; integrating the NROFF

formatting routines into the documentation; prompting the user for required

menu and help entries when adding a command.

3-46

3.6.2.1 Boilerplate

The boilerplates for source files are unique to the language, C, Fortran,

or shell but the information required is essentially the same. The

boilerplates make use of certain SCCS variables such as date of last

modification. The user will fill in the information as required for his

routine and delete the portions which are not applicable. The commands which

enter him in the Ned editor with a fresh boilerplate are newfile(nwf) and

add-doc(adc)

. The add doc command will prepend the boilerplate to an existing file which

was not begun by newfile.

The following is a detailed description of how one would fill out the

boilerplate for a C routine:

o FILE NAME

This is the source file name to be used by the compiler or leader

commands. It may contain several entry points but the name of the file

may or may not be one of them. For C routines under afes, the suffix

must be ".c" with a total length of 12 or less characters.

o VERSION

The version number is supplied by SCCS via translation of the %I%

variable. The following is the meaning of the number:

release.level .branch.sequence

For afes the number is limited to one branch off the main trunk.

e DATE OF LISTING

3-47
3.."

t __ _

The date of the listing is also supplied by SCCS via translation of the

%H%%T% variables.

" PROGRAMMER

Tha person responsible for this program.

" DATE OF LAST UPDATE

Provided by SCCS via translation of the %G%% % variables.

" ENTRY POINTS

This is a list of the entry points, ie. main and/or functions contained

in this file. There must be at least one.

" INPUT/OUTPUT FILES

This is a list of all data files which are opened by functions within

this file. The complete pathname and the r/w mode should be included. A

description of the data file layout should be included in a file

accessible via the doc command. For example, if a file is opened which

follows a particular standard then list the standard by doc name.

a INCLUDE FILES

Include file names are to have the suffix ".h" and be 12 characters or

less in length. They are to be loaded by the compiler from the working

directory, ie. no pathnames are allowed. The variables which are

declared or defined inside an include file are to contain their

descriptions within the include file and need not be repeated in the

documentation of the C program which references them.

3-48

" MACROS

C provides certain language extensions by means of a simple macro

preprocessor. All macros defined by the "#define" compiler control

statement will be listed under this section and will contain comments

describing the input arguments, if used, and the purpose of the macro.

" GLOBAL DATA STRUCTURES AND VARIABLES

Global data structures and variables are thoie which are defined outside

any function and are, therefore, available by the same name to many

functions. If the variable is defined in another source file, then an

extern declaration is required. Otherwise, the variable is defined in

this section which is outside the first left brace. There will be only

une declaration or definition per line and a description on the same

line.

" ENTRY

This is the beginning of the function dependent documentation which will

be required for each main or function entry in the source file. The

entry will be listed here as it is in the function definition statement

prior to the first left brace of each function. In addition, each

argument will be listed beneath the entry with one entry per line and a

comment describing it.

" ARGUMENT RETURNED

For each function there will be an explicit return, or an exit in the

case of a main entry. The type of argument returned and its possible

values, if significant, will be listed under this heading with one per

line. The default type will be Integer. The type of argument will

correspond to the function type.

3-49

" FUNCTION

This should be a one or two line explanation of the function of this

entry. The same thing will be used for the addfile command.

" DETAILED PROGRAM DESCRIPTION

The first part of detailed description should be the method of solution

or algorithm used by this routine, if applicable. The reason for its

existence could also be mentioned here. Any theoretical references would

be listed here.

Next, there will be a step by step description as to how the function of

this routine was performed. This will be in a structured (if then else)

English such as:

prepend a "-" to the help argument
while an input line exists

if the line begins with "-argument"
write "argument:O
while an input line exists

if the line begins with .. ~
then take good exit

else output the line
end of if

end of while
end of if

end of while

o FUNCTION CALLS

There will be two major headings under functions; File Internal, and File

External. Function entries defined in the same source file are placed

under the File Internal heading. All functions which require explicit

inclusion by file, or by library name ("-I" flag) during compile and lead

will be included under the File External heading, and will have the

library name following the variable.

3-50

" COMPILE STRING

Included at this point will be the actual compile string which would be

used to produce an object file of the source file, or an executable

module if it has a "main" entry point.

" EXECUTABLE CODE

This is the main body of the function. A few additional items may appear

at this point before the first left brace. The actual declaration of

static variables, the function entry itself, and its input arguments(if

any), will appear prior to the left brace. After the left brace any

local variables will be declared. There will be one per line and each

one will have a comment on the same line. They will be grouped by type,

ie. integer, char, etc. There is no prescribed order of the groupings.

Next will begin the actual executable code, which will contain major

comments for logical segments and minor comments as required. The end of

each function will be an explicit return or exit with value. All actual

code generation should use tab indentation corresponding to conditional

levels in the code.

3.6.2.2 Formatting Routines

A major contributor to zasy documentation is the NROFF formatter. This

formatter allows one to easily modify a document, label levels, provide

automatic numbering of sequential items, etc. Please refer to the off-line

manual for NROFF for details as to how to use it. All of the AFES

boilerplates are written so the user only has to fill in the blanks. He only

needs to understand NROFF if he wishes to create a more detailed document.

3-51

3.6.2.3 Prompts for Menu and Help Entries

Every command which the user wishes to add to the AFES system must be

added via the "add to afes" or "add to small" commands, where add to small is

for 11/34 commands only. These commands are essentially the same with the

difference being in the type of items one might wish to add. The only

significance of these commands, in the area of documentation, is to cue the

user to add the appropriate entries in the correct menu and help file. This

is accomplished by entering the ned editor with the correct file. The user

then duplicates an entry replacing the name with the command name being

entered.

3.7 AFES ADMINISTRATOR

As mentioned briefly under Software Control, the AFES administrator is

the manager of AFES software. He is the one who adds users to AFES, maintains

multiple releases of AFES software, and assures system integrity. His task

has been made as automatic as possible to reduce human error to a minimum.

3.7.1 Adding AFES Users

When a user is to be added to the AFES environment the AFES administrator

must first add the user to the Unix system by creating an entry in the

/etc/passwd fill and creating a login directory for him. The AFES

administrator then logs in as the user and executes the /u/afes/bin/adduser

command. This command will bring a copies of the ".afesinit" and ".envinit"

files into the user's login directory on both systems and make an entry in the

"everyone" file for AFES mail. The next time he logs in he has access to AFES

commands and all directories he needs will be created.

3-52

3.7.2 Maintaining Multiple Releases

As was mentioned earlier, the AFES administrator maintains two releases

of AFES files and commands. The higher-number release is stored in

/u/afes/.toprelease for reference by some commands. One additional release

(lower) is also maintained. The default release is determined by the $z shell

variable which Is set when one logs in or is changed when one executes the lnk

command. The Administrator receives mail any time a file under AFES make

control is modified via edf/dtf. He will update the entire system via the

afesupdate command. If no one has modified a file in the lower release(which

is usually the case) he will so indicate when executing afesupdate. This has

the effect of changing the modification dates of the lower release files

effected and obviating any recompilation of files. In the upper release the

makefiles are first made via the makemake command. Next the individual AFES

directories are remade. The libraries are updated via the makelib command.

The 11/34 must be booted and the link established before executing afesupdate

or tst since any updated commands are down-loaded to the /u/afes/smbin$z

directory on the 11/34.

At logical stopping places during the development of AFES the

Administrator will decide that the higher release should become fixed as the

operational release and 'ne lower release deleted. He may accomplish this

task via the nextrls c&_;and. He must make sure there are no AFES files being

edited before executing this command. This command will do a "get -e" and

"delta" for every file in the afes system in the next higher release. It will

then make all the directories required and copy all the files into these

directories. All users will be notified to link to the new release for

development of programs.

3-53

3.7.3 Assuring System Integrity

The AFES framework of SCCS/MAKE has made the job of system integrity as

straightforward as possible but the AFES Administrator must still be somewhat

involved with the development of programs in the AFES environment. He must

make sure that programmers are adding the proper documentation at all levels

and that any changes to routines which might affect others are coordinated.

If a user forgets to add a routine which makes his loading fail the

Administrator must circumvent the mistake so other files which need to be

remade can proceed. At the same time he must identify the problem to the

programmer. The AFES Administrator is the catalyst which keeps everything

running smoothly and efficiently.

3-54

7)A30125 AUOMAC FEAUEEXRACONSYSTEMNO 2U) PAR 12
TECHNOLOGY CORP NEW HARTFORD NY JC LEI ZET AL.
JAN 83 PAR-82-19 RADC-TR-83-22 P30802-81-C 0034

UCASFIED F/0 20/ 6 L

EEEE~EEE~hh
EEMh EEhE

L6

1.25 .. 1.6

uiiiii ,_ _____o_ II,

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARuS 1%3.A

4. MEASUREMENT EXTRACTION AND CLASSIFICATION

4.1 INTRODUCTION

This section is intended as an introduction to statistical pattern

recognition in general, and its implementation in the Automatic Feature

Extraction System (AFES) in particular. It proceeds from an introduction of

basic concepts to the actual implementation of these concepts within the AFES

framework.

Statistical pattern recognition is simply the implementation of the

childhood concept of learning by similarity. If a young child is shown

several pictures of other animals, he can recognize which of the animals are

dogs. He recognizes them in spite of the many differences in details between

the example dog pictures and the pictures he is subsequently asked to

identify. The child is able to recognize the dogs among the other animals

because their pictures are "similar" to the pictures he was initially shown.

Hence the child perceives the essential characteristics of what is a dog and

what is not a dog. He is then able to differentiate and generalize based on

these characteristics.

Statistical pattern recognition is applied to image understanding and

feature extraction in a similar manner. There is, however, a significant

difference between how the child recognizes images and how the computer learns

to recognize images. The child can normally identify for himself the

essential characteristics which make a picture of a dog really a picture of a

dog. However, in computerized statistical pattern recognition and feature

extraction the operator or researcher must identify for the computer the

essential characteristics of the area types which are to be identified.

Indeed the selection of the characteristics which are to be measured in order

to determine the similarity of one thing to another is the critical step.

4-1

MOWN

Once the desired measurements for determining similarity have been

selected, classification becomes straightforward.

The subsections which follow describe the processes of me-surement

extraction and classification in more detail. Selection of measurement and

classification algorithms for a particular application normally requires

considerable experimentation with test imagery. The AFES provides a

convenient mechanism for formulating and executing image exploitation

experiments, called the AFES Image Processing Language. It is described in

Section 6 of this report.

4.2 MEASUREMENT EXTRACTION

Measurement extraction is the assignment of numerical values to

characteristics of objects. To more clearly understand the concept behind

measurement extraction, consider for a moment an example not directly related

to images. Suppose the problem at hand is to characterize a particular object

as to whether or not it has been made of wood. Previously other examples of

wood have been shown to the computer program or to an individual who must use

measurable quantities for characteristics. Characteristics which come to mind

might be shape, density and texture of the object. Shape, while it is a

characteristic of the object, would not be good for classification into wood

or not wood. Wood can be made into a variety of shapes as can concrete,

plaster, plastic and other materials. Density might well be a good

characteristic since it is relatively easy to measure, and also would serve to

separate wood from most of the other materials listed above. Feeling to the

fingertips might also be a good measurement, in the sense of discrimination,

except it might be very hard to automatically reduce feeling to a number, even

though it is a measure easily distinguished by a human observer. Feeling then

is an example of an essential characteristic which is not easily measured by

machines for use in statistical algorithms. Measurements for computerized

classification must be both meaningful and efficiently implemented.

4-2

.

In the example of wood versus not wood, we are therefore led to density

as a good measure to use in classification. In some cases the use of two or

more measurements will yield better classification results. Consider the

following example. Suppose that we desire to sort finished wood according to

species of tree by imaging the wood with a TV camera. At this point we will

deal with only two types of wood--birch and ash. How should we proceed? We

know for a fact that ash is usually darker in color than birch. Therefore, we

could measure the brightness of some samples. If the average brightness value

exceeds some value or threshold we will classify the wood as birch; if below

the threshold we classify as ash. Once again we are classifying based on a

single measurement, yielding a measurement vector, (xl), in one dimensional

measurement space. If we want to differentiate even more accurately between

birch and ash, we can introduce a second measurement. We also know that ash

has a more prominent grain pattern than does birch. Wood grain can be

measured through the light to dark transitions in the sample. If this

frequency of change per unit distance is above some determined threshold, the

object will more likely be ash than birch. Thus, we can use grain as a

measurement, x2. Our classification of ash versus birch is now based on a

vector X, where X is comprised of two components, xl and x2. We say that X is

a measurement vector in two dimensional measurement space.

We can now be more explicit about how a computer actually performs

classification. This explanation will also make clear why selection of

appropriate measurements for the classification process is so important. In

the example given for classifying a piece of wood as either ash or birch,

based on a single measurement, we said that if brightness were above a certain

threshold level k, we would classify the piece as birch; otherwise the piece

would be classified as ash. This process can be thought of as partitioning

the number line into two sets, one set consisting of all numbers above the

threshold and the other set containing the remaining numbers.

4-3

This is Illustrated in Figure 4-1.

Set 2 (Ash) Set I (Birch)

0 k P

Brightness

Figure 4-1 One Dimensional Classification

In the example using two measurements, brightness and grain frequency,

the classification process may be thought of as partitioning the plane into

two sets. Two possible ways of positioning the plane are shown in Figure 4-2.

xc2 / Set 2 Set 1 x2

$t (Ash) (Birch) Set2

r 0P's Set II
brightness xl xl

(a) (b)

Figure 4-2 Two Dimensional Classification

The examples illustrate the concept of "mapping into measurement space".

The measurement space of Figure 4-1 is one dimensional and the measurement

space of Figure 4-2 is two dimensional. "Mapping into" measurement space

means locating the point In the measurement space which corresponds to the

item to be classified. The point In measurement space is determined by the

4-4

measurements made on the object. Thus, in Figure 4-1, the point marked "P"

corresponds to a piece of wood whose brightness is a little greater than k.

The points marked "P" in Figure 4-2(a) and 4-2(b) correspond to a piece of

wood whose brightness and grain have approximately equal numeric value.

Choice of measurements defines the measurement space. Choice and

training of classifier partition the defined measurement space into sets. The

choice of a classifier determines the general shape of the set boundaries

(i.e. straight lines, ellipses etc.) and the training precisely locates these

boundaries (i.e. slope and intercept of the straight line, centroid and

eccentricity of the ellipsoid etc.). Though the examples were of one and two

dimensional feature spaces only, statistical pattern recognition often is done

in higher dimension spaces. (Thus, lines become hyperplane in the general

problem). Classification, per se, of an object is accomplished by determining

which set of points in measurement space contains the point corresponding to

the object to be classified.

Thus, the central role of measurement selection can be readily

appreciated. If the measurements are such that points in measurement space

corresponding to the same class of objects cluster closely together and are

far (in measurement space) from points corresponding to objects of different

class, the precise shape and location of boundaries (i.e. choice and training

of classifier) become unimportant. If the measurement space points fail to

meet the criteria of same class closeness and different class separation, no

classifier can work well.

AFES has a large number of measurement extractors available including

edge detectors, texture measures, and transforms. Below is a list of the

measurement extractors available in the AFES, and a brief description of their

purpose.

4-5

acf - run on the output fram mnvar, aef computes the
autocorrelation among points

aredge - area edge detector
athres - finds the total area of a window above a threshold value
avg - average (mean) over a window
bestfit - Gradient of "best plane" fit to 2 x 2 window
bthres - finds the total area of a window below a threshold value
cntyeaks - Hsu texture measure which counts peaks and troughs
contr - local measure of contrast
cp_hist - counts peaks of a smoothed histogram of a square window
epq - equal probability quantized image
ep smooth - perform edge preservation smoothing
filt Itt - apply an itt transformation to a file
gray_crect - make a correction image from a constant calibration image
graymatch - apply a correction image to an image
hyperb - calculates the hyperbolization of a histogram
int stdv - finds the standard deviation of the intensities
lapl - Four point Laplacian
maxcontr - finds the maximum contrast value of a window
maxint - finds maximum intensity of a window
median - median over a window
mincentr - finds the minimum contrast value of a window
minint - finds minimum intensity of a window
mitch - First phase of Mitchell texture measurement
mnvar - calculates the variance, statistical

difference, skewness or kurtosis of an image
moments - finds the kth moment of a window
pntedge - point edge detector
rang - finds the range of intensity values of a window
roberts x - Roberts' cross edge detector
sobel - Sobel edge detector
sumdxdy -Simple gradient edge detector
sumpeaks - Hsu texture measure which sums heights of peaks
unshrpmsk - apply an unsharp mask to sharpen edges of a window

1.3 TRAINING AND CLASSIFICATION

Ultimately characteristics such as those described in the preceding

section are used by a classifier to assign the input data to one of a finite

number of categories. This process is called classification. In order to

determine the essential characteristics of some object, one must first provide

samples of that object. The process of giving an example of an object i."

called training. Training is performed in conjunction with what is termed

supervised classification. Unsupervised classification does not require

4-6

training, and will be discussed later.

Samples acquired for training must meet two criteria. They must be

separable and they should be of informational value. Separability implies

that if statistical or quantitative measurements are extracted from each

training sample, and the vectors containing these N measurements are plotted

in N dimensional space, areas (volumes) representative of each training sample

in the plot should be distinct and not overlapping. The N-dimensional space

corresponding to the N-measurements is, in most Pattern Recognition

literature, termed the "feature space". However, here we will call this space

the measurement space to avoid confusion with the use of "features" to

describe cartographic features.

Additionally, in practice the training samples must be representative of

the population one is looking for. If one wishes to identify coniferous trees

in an image, and uses a sample containing many species of trees, the sample is

not a true representation and will result in misplaced and misshaped

partitions. If training samples are not distinct from each other, or do not

present the operator with information helpful in solving his task, subsequent

classification results may be poor and impossible to interpret. Thus, in

practical cases the selection of training samples is quite important to the

entire process.

Once the desired measurements have been determined classification can

begin. As previously mentioned, classification is a decision-making algorithm

which uses the measurement space derived through training to place the input

data into the appropriate category or class. It should be mentioned that

several training regions may be defined for a single class. For example in

defining a class called vegetation, the user may outline samples of both

woodland and farmland as training regions. In cases where two or more sample

regions are available, the measurements are combined to form a single vector

for the entire class.

4-7

How a classifier actually determines the category into which a pixel

should be placed varies with the particular classifier algorithm. Those

available under AFES will now be discussed.

4.3.1 Mean Nearest Neighbor (mean.nn)

Mean Nearest Neighbor is one of the more simple classification

strategies. The mean or average value is determined for each class of

training regions based on the output of the measurement extractor(s). An

unknown pixel may be classified by computing the distance between the pixel

feature value and the mean feature vectors for the various classes. The pixel

will be assigned to the "closest" category, i.e. the class having the smallest

difference between pixel value and the vector.

4.3.2 Condensed Nearest Neighbor (cnds.nn)

Condensed Nearest Neighbor uses consistent subsets of the training

samples to perform a Nearest Neighbor classification. A consistent subset is

defined as a stored subset of the training sample which when used as a

reference set for the Nearest Neighbor rule correctly classifies all remaining

pixels in the sample. An algorithm is used to determine a consistent subset

for each training region. In cases where more than one region is defined for

a particular class, the subsets are combined. The Nearest Neighbor rule is

then applied using the differences among the input pixel versus the subsets to

determine the appropriate class.

4.3.3 Mahalanobian (mahal)

The Mahalanobian classifier, as with mean nearest neighbor, determines a

mean vector for each class of training regions. In addition the covariance

matrix is calculated for the sample regions, providing information as to the

dispersion of the data in any direction within a class. The distances between

the input pixel and the various classes are computed. These distances are

4-8

then normalized according to the spread of the data in the respective class as

determined by the covariance matrix. This yields the Mahalanobis distance.

The pixel is then assigned to the class to which it is closest using the

minimum Mahalanobis distance among the pixel and the various classes.

4.3.4 Multivariate Categorical Analysis (mca)

The Multivariate Categorical Analysis classifier is similar to the

Mahalanobian classifier. Compromises have been included to enhance

performance, resulting in a cheaper algorithm with respect to execution time.

For a detailed discussion of "mca", the reader should reference "Multivariate

Categorical Analysis - Bendix Style" by Robert Dye of Bendix Corporation.

4.3.5 Unsupervised Classification (cluster)

An unsupervised classifier is one that does not utilize any training

samples. Clustering techniques group the input data into clusters, so that

elements in a cluster have a high degree of similarity and elements belonging

to other clusters have a large degree of dissimilarity. The technique

employed in the "cluster" uses a new measure of similarity called the Mutual

Neighborhood Value (MNV). This measure considers the conventional Nearest

Neighborhood ranks of two samples with respect to each other. The

conventional Nearest Neighborhood rank is computed using the Euclidean

distance. The MNV of any two pixels then is the sum of the ranks with respect

to one another. If the MNV is equal or less than some specified threshold the

samples are grouped together into a cluster. This algorithm Is quite

versatile as it needs no specification of the expected number of clusters, and

can discern spherical and nonspherical clusters as well as linearly

nonseparable clusters and clusters with unequal populations. Since this

explanation is broad at best the reader should reference "Disaggregative

Clustering Using The Concept of Mutual Nearest Neighborhood" by K. Gowda and

G. Krishna from "IEEE Transactions on Systems, Man, and Cybernetics", Volume

SMC-8, No. 12, December 1978 for a more detailed description.

4-9

This discussion of statistical pattern recognition has focused on

measurement and classification processes, areas where researchers continuously

seek more accurate and efficient algorithms. Classification schemes which may

be trivial for a human observer may prove nearly impossible for the computer.

For example locating a military base is easily accomplished by a photo

interpreter. The observer focuses on pattern of buildings versus the

surrounding area. For the computer, however, no true concept of "contextual

clues" exists. Thus the computer may focus on lengths of edges and

orientation of the image, and the computer may still have difficulties since

many characteristics of military bases such as roads and housing are similar

to civilian settlements. Yet the computer is often able to make distinctions

very difficult for humans, such as fine changes in texture. The thrust of

research then should be to incorporate those contextual clues which humans use

to perform classifications into schemes plausible for machines. In this way

we can take advantage of the positive aspects of both humans and computers.

4-10

5. SYMBOLIC IMAGE PROCESSOR

5.1 INTRODUCTION

This section describes "sip", a Symbolic Image Processor. sip is a high

level interactive system designed to process images symbolically. It is

primarily intended to be a test-bed for new pattern recognition algorithms of

a heuristic rather than a statistic nature. As such, sip is an attempt to

apply the results of Artificial Intelligence research to image exploit 'on.

sip has been written in the LISP programming language. The LISF £.lect

used is the University of Maryland's implementation of the Univ , of

Wisconsin Univac 1100 LISP. It is not necessary to know LISP in ordt use

sip. It is very helpful, nonetheless, to be somewhat familiar with it. This

is especially true in writing production rules, for which it is suggested that

one understand LISP in some detail. Production rules are covered in greater

depth below.

Because sip is an experimental system and because it is written in LISP,

new users may find it difficult to get started. To alleviate this problem, an

effort has been made to make sip a hospitable environment in which to process

images. Every sip command is listed in a menu, accessible from the shell via

"menu symb". Manuals for sip are available from the shell and from sip via

the "man" command. Also, a "help" command is present in sip. Finally, there

are this document and the code itself, which is well documented.

5.2 THEORY OF OPERATION

sip, when used to process an image, will in general be the last AFES

program to access that image. All of the more traditional AFES statistical

pattern recognition should occur before sip is run. The general processing

flow is as follows:

5-1 i

1. Enter image

2. Define a classification method

3. Train and classify

4. Examine classification results

5. Edit the classified image

6. Preprocess the image

7. Run sip

We now discuss the last two steps in greater detail.

5.2.1 Preprocessing

Image preprocessing is a prerequisite for symbolic image processing.

Preprocessing is needed because of the way in which images are represented

symbolically. The symbolic representation of an image is very differert from

any pixel-based representation. The exac: format for symbolic representation

is discussed below in the section entitled "IMAGE REPRESENTATION".

Preprocessing Is performed on the 11/34 by a program called "sip preprec"

also known as "spp". sippreproc takes the classified current working image

as input. This image is displayed on the Df-Anza display. A series of

programs; "region nam", "regionatr", and "regionbnd"; is executed by

sippreproc. They assign names to regions, extract region attributes, and

extract boundary information respectively. The results are transferred over

the link to the 11/70 where sip can access them. The entire preprocessing

sequence takes roughly ten minutes. Less time is required when there are

fewer regions in the image. The user should refrain from executing any other

5-2

commands that use the link while sip_preproc is running.

5.2.2 SIP

Once an image has been preprocessed at the 11/34 workstation it may be

manipulated symbolically on the 11/70 using sip. sip must run an the 11/70

because it is written In LISP and so occupies vast amounts of memory. It

would be desirable to run sip from the 11/34 in order to use the display as

processing proceeds, however this is not possible with the current link

configuration.

There are several actions a user can take while sip is running. He may

access, via "enter", the preprocessed image. Information about individual

regions, edges or features as well as information about the entire image can

be computed and printed. Attributes that can be computed include area,

edgelength, average intensity, location, perimeter, and class type. Several

adjacency relations are also provided. Regions may be merged together under

operator control to define features. Better still, rules can be defined to

recognize features; such rules are executable without user intervention. When

processing is complete the user can check his results, and save the updated

symbolic image via "store". "restore" can be used to retrieve a previously

"store"d symbolic image. This procedure can be repeated until the desired

features have been satisfactorily recognized.

Thanks to the interactive nature of sip, the effects of any operation can

be verified immediately. It may happen that after performing some operation

it becomes necessary to undo it. There are two ways to do this. First, if

the symbolic image has been "store"d and the stored version is okay, then

"restore" may be used to back up. If there is no usable stored version then

"enter" may be used to retrieve the original, unmodified symbolic image.

5-3

5.3 IMAGE REPRESENTATION

There are two concepts central to symbolic image processing under the

AFES that should be elaborated upon before discussing image representation.

The first concept will be called a sip object for want of a better term. It

is an entity that represents some portion of an image. A sip object can be a

region, edge or feature. r4, 119 and island:13 are typical names of objects.

sip objects are the fundamental things we refer to and talk about in the

symbolic image domain.

The second concept concerns attributes. An attribute is a property

associated with an object. Some attributes of objects are "area", "class",

"includes" etc. The attributes of an object are stored or a property list

maintained by LISP. The sip function "printprops" will display the attributes

of a sip object. In general, regions, edges and features will have different

sets of attributes. Those attributes that apply to regions are: "area",

"center", "class", "intensity", "level", "partof". Those attributes that

apply to edges are: "edgelength", "level", "image". Only a few attributes

apply to features. They are: "class", "includes", "partof". To modify an

attribute one can type in LISP:

(put 'object-name 'attribute-name 'attribute value)

To access an attribute one can either execute the appropriate sip function if

such a function exists or else type:

(get 'object-name 'attribute-name)

It may be possible to compute an attribute for a feature if the attribute

is not explicitly defined for that feature. For example, suppose there is a

feature called island:13 that includes r8. To find the area of island:13 sip

would first look for an area attribute for island:13. Finding none, an

5-4

attempt would be made to sum the areas of any included regions. In this case

only r8 is included so the area of r8 would be the result.

Up to this point the words region, edge and feature have been used

without being precisely defined. We now rectify this situation. A region is

defined as a connected set of pixels of the same class.

Each region is surrounded by a boundary composed of edges. An edge is

not a pixel nor a set of pixels; it is a set of "spaces between pixels". An

edge has one region on each side, each such region is homogeneous with respect

to class. No edge can have the same class on both sides. An edge can be a

loop, for example an island surrounded by water might have an edge which is a

loop.

A feature is a set of one or more regions that have been recognized as

constituting something noteworthy. The regions in a feature are not

necessarily adjacent; a storage tank farm could consist of several separated

storage tanks; a flotilla may consist of several separated boats. Features

can be either cultural or topographical in nature. There is a fundamental

difference between features and regions in that features must be identified

from regions. This can be accomplished either manually using "conbine" or

automatically using production rules.

There are three data structures present in sip to represent images. One,

called "regs", describes regions; another, called "lsegs", describes edges;

and the third, called "feats", describes features.

5.3.1 Regs

regs is a data structure that describes regions. It is implemented as a

list. There is one entry in regs for each region. Each such entry contains

the region name and a set of edges that constitute the region's boundary. The

edges are grouped and ordered so that the edge order indicates which edges are

5-5

next to one another. For example, suppose we have a doughnut shaped region r4

whose outer boundary consists Of 11, 12, 13, and 114; and whose inner boundary

consists of 15. Then we would find the following entry in regs:

(r4 ((11 12 13 14) (15)))

To retrieve the entry from regs for a particular region, say r4, the following

LISP function can be used:

(assoc 'r4 regs)

To view all of regs just type "regs" (without the quotation marks). rO is by

definition the rest of the world that is not in the image.

5.3.2 Lsegs

lsegs is a data structure that describes edges. It is also implemented

as a list. There is one entry for each edge. Each such entry contains the

edge name and a list of regions on either side of the edge. For example,

suppose 13 separates r4 from r9. Then the following entry might be present in

lsegs:

(13 (r4 r9))

To retrieve the entry from isegs for a particular edge, say 13, the following

LISP function can be used:

(assoc '13 lsegs)

To view all of isegs just type "lsegs" (without the quotation marks).

5-6

5.3.3 Feats

feats is just like regs. Only the names are changed. Features are

stored on a list with their boundaries, feats is updated by the "combine*

function or by the "make" function in production rules. To retrieve the entry

in regs for a particular feature, say island:13, the following LISP function

can be used:

(assoc 'island:13 feats)

To view all of feats just type "feats" (without the quotation marks). I,

5.4 COMMANDS

5.4.1 Invoking SIP

sip is invoked from the shell by typing "sip", optionally followed by a

list of input filenames. Any such input files are read in by LISP and treated

like LISP source code. Production rule files, if present, should be loaded in

this fashion. LISP will not complain if a named file is not present, the file

name is just ignored.

The sip program itself is only a shell interface. It first executes

"pump" to pipe some LISP code to initialize a few important file names. Then

LISP is run with $v/sip.cmp as input, along with any other files as explained

above. $v/sip.l is the actual source code for symbolic image processing. To

look at the code, execute "ikf sip.l". It is liberally commented. $v/sp.cmp

is the compiled version of sip.l. Compiling the source code results in a

five-fold improvement in speed.

There may be up to a 15 second pause after "sip" is typed before leading

is complete. A message will be printed and the user will find himself

communicating with the LISP interpreter.

5-7

The LISP interpreter signals that it is ready by printing "Eval:". Any

sip command (or other LISP function) may now be typed. The command will be

evaluated and the resultant value displayed before control returns to the LISP

interpreter. This read-eval-print cycle continues until one exits LISP.

5.4.2 LISP Commands

The LISP interpreter will attempt to evaluate every expression given it.

If it is given a single variable name, called an atom in LISP, it will print

out the contents of that atom. This is useful for viewing regs, lsegs, feats,

classlist, or rulelist. Typing the name of an atom that has not yet been

defined is an error.

To execute a LISP function, one must enclose the function name and

arguments in parentheses. Since sip command are just LISP functions this is

the way sip commands get executed.

Some functions require that their arguments be quoted. Quoting an object

consists of prefixing it with a single quote. Most, but not all, sip

functions require that their arguments be quoted. Failing to use a quote

where it is needed is a significant cause of LISP errors.

5.4.3 LISP Errors

One kind of error, leaving out a quote, was mentioned above. When it

occurs LISP will usually type:

WARNING, atom-name IS UNBOUND

Help:

At this point the LISP interpreter is confused and is asking for help.

The simplest cure is to send an interrupt by hitting the rubout key. This

tells the interpreter to forget whatever it is doing and get back to "Eval:"

5-8

made.

Another frequent error is the misspelling of atom or function names. The

message is the same as above. So is the cure.

Forgetting the parentheses around a function is not an error as far as

LISP is concerned. The interpreter treats the function name like an atom and

prints the LISP code for that function. This is usually not what you want.

As long as LISP prompts with "Eval:" no special action needs to be taken to

get out of trouble.

There are many other possible LISP error modes, most of them

characterized by the "Help:" prompt. The safest thing to do is to send an

interrupt. An interrupt will always get LISP back together no matter what the

interpreter was doing.

5.4.4 LISP Quirks

Our version of LISP is somewhat non-standard. Here are the more

important anomalies:

case The LISP interpreter ignores upper and lower case distinctions. It

is all converted to lower case internally. The one exception is

within double quotes, but this does not concern us here. Upper and

lower case characters can be intermixed within atom names without

ill effect. The judicious choice of case may make LISP code more

readable. See $v/sip.l for example.

EOF The end of file character, also known as EOF or control-d, is used

to exit from LISP in response to "Eval:". EOF in response to

"Help:" will normally get you back to "Eval:" mode. Thus, two EOF's

will always suffice to get out of LISP. "(return)" in response to

"Eval:" will also cause LISP to exit.

5-9

Comments The comment character is a question mark. All text on a line to the

right of the comment character is ignored.

) The LISP interpreter will not evaluate an expression until the

parentheses balance. So one can type an expression on more than one

line; evaluation will net proceed until the leftmost parenthesis has

been matched. Square or angle brackets can be used in place of

parentheses. As a bonus, a special convention allows one to do some

automatic parenthesis balancing.. The rule is: any closing bracket;

),], or >; will generate the correct closing brackets to close all

opening brackets; (• [, or <; to the left back through the opening

bracket corresponding to the closing bracket that was written. For

example, writing a I will force closure of all lists starting with

or < back to the left until an unclosed [is found to close.

Real In order to distinguish real numbers from dotted pairs LISP requires

that real numbers be prefixed by a percent sign. Real numbers are

preceeded by a percent sign on output, and must be preceded by one

when input. Examples of real numbers are: %1.0, %-.57, %357.110e-

12. This is a kludge that hopefully will be fixed in updated

versions of the interpreter.

Loading When loading LISP source code files, the interpreter does not

generate any error messages. Therefore it is possible that a file

you thought was loaded has been ignored. In the case of production

rule files this can be checked by typing "rulelist" to see if the

rules were defined. To load a file while LISP is running, the user

can type:

(load "file-name")

5-10

Shell There is a special Unix LISP command, "(sh)", that enables one to

temporarily suspend execution of the LISP interpreter and begin

execution of a shell. Any shell command can then be issued. An EOF

(control-d) from the shell will return the user to LISP.

5.4.5 Sip Commands

A list of sip commands is available from the shell by typing "menu symb".

A more detailed description can be had by typing "man sip afes". For even

more detail about individual commands there is an on-line afes manual for

each. There are two sip commands that do not have on-line documentation, the

help and man commands. The sip help command, as opposed to the ates help

command, can be run in sip by typing "(help)". It prints a list of all

available sip commands and their syntax. The sip man command, as opposed to

the afes man command, can be run is sip by typing "(man manual-name)". This

will cause the execution of the ates command "man manual-name ates" from sip

by forking a shell. This is especially useful for reading on-line manuals for

sip commands while sip is running. For these reasons this document will not

describe the commands further, with the exception of production rules.

Suffice it to say that sip commands conform in every way to LISP syntax.

5.5 PRODUCTION RULES

Production rules are a means of expressing domain dependent knowledge in

declarative form. Any production rule system consists of three components; a

set of rules, a data base, and a rule interpreter. In the sip system the

ruleset can be stored in a file or typed into sip directly. The database

consists of the symbolic image as stored in memory and the rule interpreter is

just the LISP interpreter.

Rules have four parts. The first is the word "rule". This tells the

production rule system to define a rule. Next is a name to assign to the

rule. The name is arbitrary and can have any desired length. Then comes a

5-11

set of conditions which, if true, will cause the specified actions to be

performed. A typical rule might be:

(RULE FINDPARKS

(IF (CLASSIS (trees tree grass veg))

(AREAIS (BETWEEN 200 5000))

(SURROUNDED BY (resid urban) (GREATERP %.90))

)

(THEN ()

(MAKE park)
)

Here, key words are capitalized for clarity, since LISP ignores case. Typing

this code in or loading it from a file will only define a rule, not cause its

execution. To execute a single rule the user should type in the rulename

surrounded by parentheses. As the rule executes, each region will be examined

to see if the condition part of the rule is true. If it is then the specified

action is taken before the next region is examined. If the condition is false

then no action is taken before the next region is examined. It is possible to

execute all rules at once by typing:

(mapc rulelist eval)

Basic documentation on the clauses used for production rules is available

via "man rule afes". This manual should be read before continuing with this

section. Examples of production rules are available via "ikf rule exam". The

following subsection describes the internal workings of production rules.

5-12

5.5.1 Rule Declaration

When a production rule is defined, the rule macro is executed to set up

the rule. The rule name Ii; first added to rulelist, the list of defined

rules. Then the following code is created and executed:

(CSETQ rulename

(LAMBDA C)

(MAPC regs

(LAMBDA (region)

(SETQ region (CAR region))

(COND (conditionpart actionpart))

))))

Thus when rulename, a function of no arguments, is executed, each region

will be checked to see if the condition is true. If so, then evaluate

actionpart. Each region is checked in this manner.

Note that the local variable "region" holds the region name. The

production rule clauses areais, classis, perim-is, surroundedby, and make

all use "region" implicitly. A knowledgeable production rule user (defined as

anybody who has read this far) can add his own clauses using "region". For

example, a rule to print the names and classes of all regions whose class is

urban or industrial could be written:

(rule urbind

(if (class is (urban industrial)))

(then)

(print region)

(print (class region))

))

5-13

To change the class type of all shadows from shadow to unknown we might

use:

(rule shad-unk

(if (class is (shadow)))

(then ()

(put region 'class 'unknown)
))

Finally, here is a rule to recognize rivers (which I will arbitrarily say

have an area/perimeter ratio less than 5).

(rule findriver

(if (class is (water))

(lessp (quotient (area region) (outerperim region)) 5)
)

(then ()

(make river)

))[

Production rules should be kept in a file and loaded when sip is invoked.

In this way the rules can be easily edited with your favorite editor. Of

course, you may type them into LISP directly if you prefer.

5.6 SAMPLE DIALOG

sip rules m user types "sip rules"

ULISP V1.7 Copyright 1978,R.L.Kirby

Eval: SYMBOLIC IMAGE PROCESSOR UP AND RUNNING

Value: t

Eval: (enter) 0*0 user types "(enter)"

LINES READ: 93

REGIONS READ: 47

5-14

CLASSES READ: 4

Value: t

Eval: regs *00 user types "regs"

Value: (Cr0 ((11))) Cr1 ((11) (166 150 137 129 121 18 14 13 123 122 125 17

16 115 136 134 133 127 126 132 143 140 139 142 168

169 170 164 159 160 161 163 165 172) (178) G.61) (187) (188) (189) (190)

(191) (192) (193))) (r3 ((166 151 137 130 121 19 14

12 123 124 136 135 133 128 126 131 143 144 141 142 167 169 171 164 158 154

155 156 161 162 165 173) (147 146 149 152) (174) (175)

(176) (177) (179) (180) (182) (183) (184) (185) (186))) (r4 ((12 13))) (r2

((115 15 17 119 113 110 112 116 118 120 122 124)))

(r8 ((15 16))) (r7 ((18 19))) (r10 ((120 117 116 111 110 114 119 125))) (r9

((111 112))) (r11 ((113 114))) (r12 ((117 118)))

(r14 ((127 128))) (r16 ((129 130))) (r17 ((131 132))) (r19 ((134 135))) (r21

((140 138 144))) (r23 ((139 138 141))) (r27 ((145

147))) (r29 ((148 146 145 152))) (r30 ((148 149))) (r28 ((150 151))) (r32

((153 155))) (r33 ((157 154 153 156 160))) (r35 ((158

157 159))) (r36 ((162 163))) (r43 ((167 168))) (r39 ((170 171))) (r37 ((172

173))) (r5 ((174))) (r6 ((175))) (r13 ((176))) Cr15

((177))) (r18 ((178))) (r20 ((179))) (r22 ((180))) (r24 ((181))) (r25 ((182)))

(r26 ((183))) (r31 ((184))) (r34 ((185))) (r38

((186))) (r40 ((187))) (r41 ((188))) (r42 ((189))) (r44 ((190))) (r45 ((191)))

(r46 ((192))) (r47 ((193))))

Eval: (area 'r4) user types "(area 'r4)"

Value: 7615

Eval: (neighbors 'r4) u user types "(neighbors 'r4)"

Value: (r3 rl)

Eval: rulelist m user types "rulelist"

Value: ((findtanks) (findbridges) (findboats) (findislands) (findparks))

Eval: (findislands) **l user types "(findislands)"

island:1 00* sip finds an island

Eval: feats *00 user types "feats"

((island:1 ((178)))) #00 compare this with r18 above

5-15

I.

Eval: (area 'island:1) a user types "(area 'island:1)"

Value: 8718

Eval: (printprops tisland:1) 0*0 user types "(printpreps 'island:1)H

island:1

((includes r18) (class . island))

Value: nil

Eval: (printprops 'r18) . user types "(printprops 'r18)"

r18

((partof island:1) (level . 2) (intensity . 40) (center 216 . 131)

(area . 8718) (class . veg)) ** notice partof and area values

Value: nil

Eval: (EOF) " user types control-D

5.7 LIMITATIONS

5.7.1 Representation Limitations

There are some shortcomings to the current representation scheme.

Possibly the most serious is that regions are segmented based upon class type.

In order to recognize a feature, its component regions must be segmented. For

example, to find roads in a city requires that the road be of a different

class from its surroundings. But if roads, houses and factories are all

classified as "urban", it will not be possible to recognize the road alone.

The solution to this problem seems to lie in the development of classification

methods that can distinguish roads from other urban areas.

There are some attributes of regions that one would like to have around

but are difficult to measure or represent. Shape is one such attribute. It

would be nice to be able to declare in a production rule that storage tanks

are round, trucks are rectangular, etc. We do not now have this capability.

Although there se veral sip functions that deal with adjacency, none deal with

the proximity of one region to another in a more general sense. Fuzzy

5-16

concepts like this are difficult to express in any programming language.

5.7.2 Rule Limitations

As currently implemented, production rules can only take one region at a

time and make a feature of it. In order to combine more than one region into

a feature it is necessary to manually use the "combine" sip command. This

should be remediable with some more work. It might also be desirable to let

production rules operate on edges and features as well as regions. Perhaps

each rule sho,:id specify whether it is to look at regs, lsegs, feats or some

combination thereof. One last drawback of rules is that if the same rule is

run more than once on the same image, it will recognize the same features each

time, giving several names to the same actual feature. The "make" function

should be fixed to prevent this.

5.7.3 Number of Regions

Running as it does on a PDP-11, sip has storage limitations. There is an

upper limit of roughly 200 regions that can be fit into memory at once

depending upon the boundary configuration. This is actually not as many

regions as it may seem, so some editing will be required on most images before

sip_preproc is run. im edit can be used to manually reduce the region count,

and rm noise can be used to automatically reduce the region count. If there

are too many regions, LISP will print a nasty message when "(enter)" is typed.

To process more regions we could use a larger machine, such as a VAX.

5.7.4 Speed

The preprocessor, which takes roughly 10 minutes of PDP-11/34 time, is

one bottleneck, but its performance is not readily improved upon. sip itself

uses compiled code, and so runs fairly quickly. Typical times are 15 seconds

to get sip running, 20 seconds to "enter", and 5 seconds to "restore".

5-17

- -- - -- -

6. AFES IMAGE PROCESSING LANGUAGE

6.1 INTRODUCTION

The purpose of the AFES Image Processing Language (IPL) is to provide the

experimentor with a language which he or she can use to specify the AFES tools

and parameters for an image processing experiment, and to set up a sequence of

experiments to be run automatically in a "batch" mode. Such a sequence of

experiments could involve application of a series of different processes to a

single image, repeated alteration of the functional parameters of a single

process, application of a single process/parameter set to a sequence of

different images, or any combination thereof. For example, one might wish to

apply a number of different edge enhancement operators (e.g. Sobel, Robert's

Cross, Laplacian, etc.) to an image then assess the results of each one. Or a

pixel classification procedure might be applied repeatedly to an image, with

each iteration using a different combination of measurement extractors or

different values of measurement extractor parameters, e.g. window sizes,

thresholds, weighting factors, etc.

The Image Processing Language consists of a table structure which

specifies how an experiment is to be conducted, a set of special commands for

modifying the table, and a control structure which supervises the definition

and application of the experimental procedure. Each user has one or more

private versions of each of these structures.

6.2 TABLE STRUCTURES

The first structure specifies what image is to be processed. The AFES

identifies an image according to photo, view, and frame. The photo is the

basic unit of source material, such as a single film clip. This is divided

into views, with one view being the size of a typical AFES image, e.g. 1024 x

1024 pixels. The view is further divided into frames where a frame may be the

6-1

left or right conjugate of a stereo pair or simply a single (monoscopic)

image.

The second basic table structure for the IPL is the AFES "method file".

It constitutes of a "recipe" for an image processing experiment. A typical

method file for statistical pattern recognition as applied to individual

pixels might be:

measurements:

avg 3
lapl

classi fier:
mahal [optional arguments]

(training set)

class:
trees

regions:

trees1
trees2

class:
water

regions:

lakel
riverl
river2

class:

urban
regions:

industryl
residentiall

comments:

<user comments>

The measurements are the AFES pixel measurements to be extracted from

each image pixel. A list of available measurements is contained in the meas

menu.

6-2

The particular classifier to be used is the next entry. A variety of

supervised and unsupervised classifiers are listed in the class menu. In the

above example, the Mahalanebian classifier is used, which requires supervised

training. Hence, a specification of the training regions to be used for each

desired output class is given. Each user has a collection of training regions

which are defined interactively via the get-region command.

Initial versions of AFES support method files for pixel classification;

future extensions are anticipated which will incorporate similar types of

specifications for edge-based region extraction (as opposed to pixel-based

extraction), region classification, and symbolic processing.

6.3 IPL COMMANDS

The image processing language uses a set of special commands which

perform non-interactive modification of the table described in the preceding

section and apply procedures defined in the method file to the image defined

by the current photo, view, and frame.

6.3.1 Change Processing Image (cpi)

The purpose of cpi is to change the image being processed from within the

image processing program. Typical uses would involve applying the same

processing method to a number of different images.

The syntax is:

cpi <photo> <view> <frame>

6.3.2 Change Processing Method (cpm)

The cpm command allows the IPL program to change from one processing

method to another. A user would typically have defined a collection of

methods, each given a unique name or "method-id". The syntax for changing the

6-3

method from within an IPL program is:

cpm <method-id>

6.3.3 Modify Method (mod-method)

The mod-method command is the most powerful special function which the

IPL uses. It allows the user to alter the processing method from within a

program. A number of flags are used to specify how the method is to be

changed.

The command syntax is:

mod method(mdm) [<-ma "add measure" ("del measure"]> H
<-md "measure"> :1 <-c classifier> ::
<-ra class region> H; <-rd class [region]> H
<-o "comments"> H1 <-sv methodid> <-s>]

where, as usual, <arg> denotes a mandatory argument and Earg] an optional

argument.

The following is a description of the flags and how they work:

- ma -the first argument string in quotes is a measurement string to be

added. The second argument string in quotes is optional and represents

an old measure to be deleted from the method file. When the second

argument is present the function is a replace measurement.

- md -delete the measurement string in quotes

- c -changes the classifier name and/or any optional arguments

- ra -adds the region to the class and adds the class if needed

6-4

- rd -deletes region from class and entire class if the optional region

name is not given

- o -adds comment line in quotes to comments section

- sv -saves the current method including classified output under a new

method name

- ls -lists the contents of the method file to standard output

The "-sv" switch would be especially useful if a method works very well and

the user would like to save it but continue experimenting with the current

method.

6.3.4 Current Methods and Images

A user performing image processing experiments may run the required

programs in the foreground. That is, when a program is started, input from

the terminal is suspended until the program finishes and returns control to

the terminal. IPL programs executing in foreground operate on and use the

AFES current "working image" and "working method".

UNIX also provides the capability to initiate "background" processes,

i.e., input from the terminal continues while the background process executes.

IPL programs can run in the background and in fact it is often convenient for

them to do so, so the user can continue with program development, foreground

experiments, etc., while a lengthy IPL program executes in the background. In

this situation, AFES provides a separate current image and method for each

background process. These are referred to as the "processing Image" and

"processing method" to distinguish them from the "working" image and method

associated with foreground processes. The "processing" image and method are

automatically invoked by cpm and cpi commands which are executed by an IPL

6-5

program in background. The important things to remember are that (1) an IPL

program running in the foreground always operates on and uses the current

"working" image and method, and that (2) a background IPL program will also

operate on and use the current working image and method unless it contains

explicit cpm and cpi commands to change to a current "processing" image.

6.4 CONTROL STRUCTURE

The preceding sections describe the tables which define how an image is

to be processed and the commands which allow modification of the table by a

background process, i.e., an IPL program. The last component is the control

structure which ties these commands together into a stand-alone program. This

structure is the shell, the UNIX command language. This paper will not

attempt to provide a full description of the shell; rather, its use to

generate IPL programs will be described. Readers unfamiliar with the shell

should read the PWB/UNIX Shell Tutorial by J.R. Mashey, published by Bell

Telephone Laboratories and included in the UNIX system documentation.

An IPL program consists of a sequence of shell commands and IPL special

commands which reside in a file identified by some program name. After

creating a program file, it must be marked as executable using the "chmod"

command. Up to nine arguments can be passed to a shell program; these are

referenced in the program itself as a character sequence of the form $n where

n is 0 to 9. $0 is the name of the program, while $1 to $9 refer to the

arguments which follow the program name when it is executed. The following

examples are taken from the topical document entitled "AFES System Structure."

6-6

: 'this file runs the method "test 1" on
: 'the photo: syracuse

'for these views: viewl, view2, view3
: 'and this frame: mono

set a = 1
cpm testI
while $a I =4
cpi syracuse view"$a" mono
cfy
set a + 1
end

: 'this file runs the methods "testl-test3" on
* 'the photo syracuse center mono

set a + 1
cpi syracuse center mono
while $a I= 4
cfyl
set a + 1

end

: 'For the photo -syracuse center mono

: 'this file starts with method - testl

* 'trains the classifier for the method
: 'makes a copy of testl named test2
: 'makes test2 the current processing method
: 'deletes class "trees" from test2
* 'adds class "green" with region "field"
* 'The confusion matrices may be examined later

cpi syracuse center mono
cpm testI
train
mdm -sv test2
cpm test2
mdm -rd trees
mdm -ra green fields
mdm -ma "contr 6 / avg 20"
train

Any parameter of the method files may be modified by the "mdm" command and any

parameter of the "cpi" ar "cpm" commands may be modified. The user may

examine the output visually as with "map" for a classifier output or tabularly

as with the confusion matrix for the train command.

6-7

7. PHOTOGRAMMETRIC SOFTWARE

7.1 INTRODUCTION

This section describes the photogrammetric software available on the

Automatic Feature Extraction System. It is intended to provide insight into

the design of the software as well as give guidance to the mathematical

conversions followed during implementation.

The AFES is designed for experimentation with digital imagery. However,

the Scanner/Viewer Subsystem provides for hardcopy as one of the primary

inputs to the testbed. As a result the topic of all digital photogrammetric

techniques is addressed in light of hardcopy sources. Some aspects of a truly

all digital system are mentioned but are not the main topic of this report.

Certainly many of these techniques discussed are applicable to the all digital

environment.

Section 7.2 begins with a brief summary of the goals of the AFES design.

Subsections within 7.2 discuss specific requirements which are met by

photogrammetric processes, including maintaining stereo and performing

mensuration and point positioning, Section 7.3 which follows, provides a

detailed description of the AFES mensuration package.

7.2 THE AFES SYSTEM DESCRIPTION

The Automatic Feature Extraction System (AFES) is an integrated

hardware/software complex. It is designed as a test bed for applying image

processing, photogrammetry, pattern recognition, and artificial intelligence

derived techniques to Defense Mapping Agency (DMA) requirements for semi-

automatic map generation and updating. The AFES has been designed as a

complete man-machine system for image understanding, and an efficient receiver

of algorithms. AFES possesses facilities for easily reimplementing,

7-1

integrating and testing algorithms developed elsewhere, as well as new

algorithms. The system contains elaborate facilities for image (input) and

storage, and can be operated by persons unfamiliar with computers.

Film and map inputs to the system are processed by the viewer/scanner and

plotter/scanner, respectively. The viewer/scanner is capable of scanning a

1024 x 1024 pixel image with 256 grey levels in approximately 17 seconds. The

image size on the film plane is variable from 5 mmsquare to 30 mm square with

arbitrary rotation and skew up to 20 degrees. The viewer/scanner is

photometrically calibrated and geometrically accurate. The map

plotter/scanner accommodates both opaque and transparent input with scale and

rotation fixed. The output from the plotter/scanner is a high quality

manuscript.

7.2.1 System Requirements

There are a variety of interactive, interpretive functions that require

photogrammetric processing. The essential problem is to take measurements on

the displayed imagery and produce coordinate outputs in a ground reference

system. In addition, the analyst interprets the photos in stereo for most

tasks in his normal working environment. The automatic maintenance of the

stereo model is an essential function of the AFES test bed.

The AFES experimental functions require three basic categories of

photogrammetric processing the maintenance of a stereo model on imagery being

scanned, object mensuration, and point positioning. The system was not

required to perform as a stereo compiler with real time rectification.

Instead the user selects subimages to work on in stereo. Design requirements

did not call for constant real time mapping of object space to image space.
It was envisioned that discrete points would be measured as opposed to

functions requiring constant point collection such as profiling. Therefore,

care was taken to allow the greatest flexibility in selecting scenes to be

scanned, and positioning the cursor for point selection. The system operates

7-2

as an image space plotter with a rectified duplex of stereo cursors on the

screen for the operator to measure. The rest of the section will discuss each

of the three basic processes that AFES is designed to perform.

7.2.2 Maintaining Stereo

The task of maintaining the stereo model is accomplished by keeping the

epipolar lines parallel to the viewer's eye base. This condition is

maintained through different mathematical computations for different sensors.

The scale of each image must also be adjusted so that each is displayed at the

same scale. Finally, a cursor must be displayable in stereo for manual

delineation of features in the imagery. Since the primary image input is

stereo hardcopy images from the scanner, the main body of code for stereo

maintenance is designed for control of the scanner. There are routines,

however, for rectifying two conjugate images for stereo viewing if their

source is other than the scanner.

The maintenance of stereo requires knowledge of the orientation

information which is output from a triangulation or block adjustment

procedure. AFES relies upon the output of other photogrammetric systems to

provide the appropriate attitude and position data for images being processed.

There are no orientation adjustment routines provided on the AFES for this

purpose.

7.2.3 Mensuration

Some of the ground space measurements that are obtained from the image

data are relative measures. That is, the height of a tower or length of an

object are often required. This mensuration process can be performed by local

image measures of shadow or local differential parallax. In the AFES however,

there is enough information available that rigorous models can be used even

for mensuration. The mensuration programs operate in a local vertical space

as does the point positioning software.

7-3

The routines available for mensuration are Interactive. They allow the

operator to measure height changes and planimetric distances. Incorporated

into the software that manipulates the region data generated by the

Statistical Pattern Recognition Modules are measures that relate areas of

contiguous regions to areas on the ground. These routines are based on local

scale derived by height informatiorn and the sensor models.

7.2.4 Point Positioning

There are two methods of point positioning which would be applicable to

the AFES. The first is point positioning with rigorous sensor model. This

could be performed stereoscopically or monoscopically with elevation data

included. Alternatively, a warping procedure can be used to fit a single

image to a ground coordinate system. Unfortunately, this warping procedure

does not incorporate any relief distortion. However, in areas of relatively

flat terrain a warping procedure would be adequate and the algorithms are very

fast.

The AFES uses both rigorous models and warping for point positioning.

The rigorous models are incorporated in a series of interactive routines which

allow the operator to select in stereo or monoscopically the points which he

wishes to measure. The system supports several sensor models and provides

outputs in a variety of ground coordinate reference systems. The warping

software accepts control point data from the operator while the operator

measures the points on the sub-images displayed. The corresponding point V

values are then used to generate the geometric transformation from Image to

ground. These geometric transformations, based on two dimensional polynomial

transforms, are then utilized by the resampling routines to generate an image

registered to the ground reference grid of the central points. The transforms

for registration include first through fifth order polynomials.

7-4

7.3 MENSURATION PACKAGE

The AFES "mensurate" command allows the user to perform mensuration tasks

interactively. Measurements for these commands are performed on the specified

display channel(s], which are specified as an argument to 'mensurate'.

" -s use the left and right monochrome display channels

" -c use the red and green color display channels (anaglyph)

" -R: use the red channel only

" -G : use the green channel only

" -B : use the blue channel only

" -1 : use the left channel only

" -r : use the right channel only -p • if, present as a second argument

specifies current header information data is present in mensuration form

that matches what is currently on the display

Upon invocation, af * r a short delay for preprocessing the header information,

the prompt 'enter command > ' will appear on the terminal. If the return key

is typed in response to this prompt a menu will be printed out on the

terminal. The prompt, for entering a command after the initial prompt, will be

a '> '. A menu of available commands can also be found during execution by

typing 'commands'.

Available mensuration commands include:

7-5

spts : Stereo point positions

relpts : Finds relative point positions

height : height of objects

distance : xy distance between points

phopts : Find photo point positions (stereo)

mpts : single photo local xy points

mphopts : single image photo points

quit End execution of program (or step)

save : save output in a file

commands : List available commands

sh : Escape temporarily to another shell

geographic : output in geographic coordinates

geocentric : output in geocentric coordinates

lambert : output in lambert coordinates

local : output in local xyz

mercator : output in mercator coordinates

7-6

polar : output in polar coordinates

utm : output in utm coordinates

More explicit usage for each command is given below.

If 'mpts' is the command selected then a cursor will appear on the chosen

display. An optional argument to this command is 'left' or 'right'. This can

be abbreviated by using an '1' or 'r'. The optional argument is only needed if

operating in stereo mode and the right display is to be selected. (The left

display is the default display in stereo mode). If operating in anaglyph

stereo consider the red image channel to be the left display and the green

display as the right display. The left trackball button selects a point. The

right trackball button toggles the cursor from crosshair to dot. The center

button has no effect. After a point has been chosen the user enters the

elevation of the point on the terminal. The local xyz ground coordinates are

then printed on the terminal.

The command 'mphopts' allows the user to select photo points for a single

image channel. An optional argument to this command is 'left' or 'right'.

This can be abbreviated by using a 'I' or 'r'. The optional argument is only

needed if operating in stereo mode and the right display is to be selected. A

cursor will be displayed on the center of the selected or default display.

There are two modes of operation for the trackball while in 'mphopts'.

I. If the center button (red button) is up, cursor movement will be

controlled by the trackball. The left trackball button when depressed

w411 select an image point for transformation to the photo system. The

resultant photo point will be written to standard output (the terminal

is the default standard output). The right button on the trackball

when pressed toggles the cursor from a crosshair to a dot, or a dot to

a crosshair.

7-7

II. If the center button is down, the trackball will be in a zeo and

scroll mode. In this mode, movement of the trackball will scroll H
(hardware scroll) in x and y with the trackball motion. The left

button when pressed increases the zoom factor. The right button

decreases the zoom factor. A 1X zoom factor is the initial state.

Possible zoom factors are IX, 2X, 4X and 8X.

The command 'mphopts' terminates when the same point on the image is selected

twice in succession.

The commands 'relpts', 'height', 'distance', 'phopts', 'spts' all use the

same trackball operation. A description of the functions of the trackball and

its buttons will be given here. If -s was specified as an argument to

mensurate(msr) the left and right monochrome displays are used. There is a

trackball for each display. The left trackball has the following functions

when a command is be1',g executed.

The left button selects a point on the left and right displays beneath the

cursors positions.

The right button on the left trackball changes the cursors type. If the

cursors were crosshairs and the button is hit they are changed to dots.

If the cursors were dots they are changed to crosshair.

The center button on the left trackball controls what happens when the left

trackball is moved. If the button is in the up position, trackball

movement will control movement of both cursors. If the button is down

the cursors will remain fixed and the left and right image will be

scrolled.

The right trackball has the following functions:

7-8

The left button on the right trackball allows for an increase in the zoom of

the displays when hit. The maximum zoom is 8X. The zoom is centered

around the position of the cursor on the left display.

The right button on the right trackball allows for a decrease in the zoom of

the displays when hit. The minimum zoom is IX. The unzom is centered

around the position of the cursor on the left display.

The center button on the right trackball determines what happens when the

right trackball is moved. If the button is up then movement of the

trackball will move the cursor on the right display in the x direction

only. If the button is down then movement of the right trackball will

move the cursor on the right display in the y direction only.

If the -c is used then the red and green image planes are used in the stereo

mode. A single cursor appears on the display and a point is selected when the

cursor, the desired point on the red image and the corresponding point green

images appear at the same position. The trackball has the following functions

to enable image point selection.

The left button always selects a point when pressed.

The right button changes the cursor from a crosshair to a dot or a dot to a

crosshair. (There is one exception explained below)

The center button changes the mode of operation for trackball movement. There

are 3 modes of operation for the trackball. Annotation memory for the

display (characters written on the display) show the current mode.

move cursor - allows movement of the cursor with the trackball

7-9

scroll red in x - allows the red image to be scrolled in x only. The

general procedure is to use this mode to correct x parallax. The

cursor can be 'floated' in this mode and positioned on a point.

scroll green - allow the green image to be scrolled in both x and y.

Also in this mode the right hand trackball button controls a zoom

mode. Pressing the right hand button will zoom from 1X to 2X to 4X

to 8X and back to 1X while in this mode.

The command 'height' is used to find difference in elevation of two

points. Two point pairs are selected on the images with the cursors. The

height is output on the terminal. If the value returned is positive the first

point had a higher elevation. To terminate the height command select the same

point consecutively.

The command 'distance' is used to find the xy distance between two

points. Two point pairs are selected on the images with the cursors. The

distance between the two points are output on the terminal. To terminate this

command select the same point consecutively.

The command 'relpts' is used to give relative point positions. The output

system is a local vertical system. Two point pairs are selected an the images.

The local xyz ground coordinates and the residual parallax are returned after

every point chosen. After the second point is chosen for each set the

difference in x,y and z are printed and the distance between the points in

xyz. To terminate this command select the same point consecutively.

The command 'spts' is used to compute point positions in one of several

available coordinate systems. The default system is local vr "4cal. The

output system can be changed to a different projection by typii - name of

the map projection desired while in a command mode for 'mensurate' (a command

mode is when a '>' appears as a prompt). Available output systems are:

geographic, geocentric, lambert, mercator, polar, utm. Parameters for map

7-10

projections (such as standard parallels or central meridean) should be entered

by using the command 'gee' on the workstation before 'mensurate' is executed.

Besides having output printed on the terminal it can be saved in a file

as well. To do this just type 'save' while in a command mode (when '>' is the

prompt) for 'mensurate'. A message will come back asking the name of a file

where you want the output to go. If the file already existed the output will

be appended to the end of the file. If the file did not exist it will create

and write to that file. If a carriage return is hit for the response the

commands will no longer write to this file. All commands that produce terminal

output will write to the 'save' file if one exist. The command 'save' must be

typed any time 'mensurate' is run if there is to be saved output. The command

'stop' or 'q' will stop end execution of 'mensurate'. The command Ish' will

fork a new shell.

7-11

.. .. i 1

8. SCANNER SUBSYSTEM

8.1 INTRODUCTION

The AFES Scanner System provides the means by which stereo photographs

and graphic input materials are scanned and digitized for use in the AFES

system. The scanner system is a separate computer controlled system which

incorporates linear array charge coupled device (CCD) image sensors in

conjunction with computer controlled translation stages to perform the

scanning functions required by the AFES System. Scanner operation is

essentially independent of the rest of the AFES System, and it performs

scanning and digitizing operations simultaneously with other AFES system

operations.

The scanner system consists of a stereo photograph scanner/viewer unit,

a graphics scanner/XY plotter, a control computer, special real-time digital

video processing hardware, and a control interface. The photograph scanner/

viewer has two photograph stages equipped for both scanning and viewing. The

use of two stages permits selected areas of either photograph of an oriented

stereo pair to be scanned and digitized on demand. Input map base material

and other graphics are scanned with the graphics scanner which also serves as

an XY plotter for output graphics plotting. The control computer is the

central control element of the system. It controls the scanner servos and

video processor to implement scanning and digitizing functions. It also

controls the flow of data between the scanner and the rest of the AFES System,

and provides the means for operator communication with the scanner system.

The following subsections provide a more detailed description of each

component of the scanner.

8-1

8.2 AFES SCANNER SYSTEM

A diagram of the AFES scanner system is shown in Figure 8-1. Major

subsystems include the two photograph scanners, the graphic scanner, video

processing and sensor control hardware, the control interface and a Digital

Equipment Corporation PDP 11/34 system control computer. For operator

interaction during setup, a control panel and CRT terminal are also included.

The main interface between the digitizing system and the AFES system computer

(PDP 11/70) is through one port of a dual access mass storage disk unit. The

primary function of this interface is to permit transfer of image data from

the scanner system to mass storage without interfering with other AFES system

operations. A PAR-developed contiguous file allocation algorithm has been

implemented for this dual-ported disk, which permits fast access to image

files by the scanner, which must write to contiguous disk blocks. At the same

time, these images can be accessed as ordinary UNIX files on the PDP-11/70

side.

The two photograph scanners consist of servo-driven XY photo stages,

servo-driven zoom and rotation optics and solid state linear array photosensor

subsystems. Photograph scanning is accomplished by moving the stage at a

constant velocity in one direction and sampling lines of imagery along another

direction with the array sensor. Since the array is read out sequentially,

this procedure results in a raster-type scanning of the photograph, similar to

that produced by a TV camera but at a slower rate. The output of the scanner

is a video signal which is transmitted to the video processing hardware. The

computer-controlled zoom allows for scanning the photographs at a wide range

of rerolution. Minimum pixel size is about 5 microns and maximum pixel size

is about 30 microns. The minimum pixel size was defined based on informal

studies of various spot sizes conducted by PAR and government personnel. The

range of 5-30 microns stems from the capability of the optical zoom system.

Actual maximum resolution as measured during acceptance testing is

approximately 80 lp/mm. The scanner can produce image data in a raster format

which is approximately 1000 pixels wide and of arbitrary length. Normally,

8-2

4-& Ca

CW) f-

4-30

1.1

43 L.

0

CL..

c 0C

91)

r0 OD.

00 mc

9L..

4m 43 ini

5B-

the raster is 1024 by 1024 pixels. The complete control of photo stage motion

and optical rotation allows for correction of skew image distortion while

scanning. This feature is particularly useful in scanning panoramic

photographs.

The graphics scanner is essentially an XY plotter with a linear array

camera mounted on the plotting head. This scanner has fixed optics and scans

the map or feature manuscript at a constant magnification. The graphics

scanrer provides for either front or back illumination of the image. This

allows both transparent and opaque manuscripts to be scanned. The scanning

technique for the graphics scanner is essentially similar to that of the

photograph scanner. The camera is moved in one direction while image lines

are sampled along an orthogonal direction. Because of the fixed optics,

however, the graphics scanner always produces a rectangular raster format and

a fixed resolution of 80 micros.

The video processing and camera control hardware operates in conjunction

with the three scanners to produce digitized image data. This hardware

provides synchronization and control signals to the detector array camera

electronics for image line sampling and serial transfer of image data from the

scanner to the video processing hardware. Image information comes from the

scanner in the form of sampled analog video. Since only one set of video

processing hardware is required for the three scanners, video selection

circuitry is provided for connecting any one of the scanners to the video

processing hardware. Video processing includes analog-to-digital (A/D)

conversion, compensation for sensor dark level, compensation for sensor gain,

geometric corrections, and transformation of image intensity data.

The scanner system has its own Digital Equipment Corporation PDP 11/34

control computer which runs under the RSX-11M operating system. This computer

controls overall operation of the scanner system, interacts with the operator

during setup, and communicates with the AFES main PDP- 11/70 computer. For

scanning operation, the PDP-11/70 programs generate commands to initiate

8-4

photograph or graphics digitization. Information is passed to the scanner

system computer indicating which scanner to select, photograph or graphics

coordinates for the center of the scan, magnification to be used, rotation of

the array, and scan motion parameters. The computer then generates the

necessary servo commands and control commands to scan and digitize an image,

read scan line data into the PDP-11/34 memory, and transmit this data to the

mass storage disk. Once the process has been initiated, it proceeds

independently to scan and store a digital image. During scanning the PDP-

11/70 is free to perform other AFES System operations, assuming those

operations do not interfere with the storage of digitized image data on the

dual access disk unit by the image digitizer system computer.

The scanner system computer handles the real-time transformations from

photo coordinates to stage coordinates for scanning and positioning the

photographs. These transformations are established at setup time by

performing an interior orientation for each of the two photographs. To

provide for manual motion of the photographs during interior orientation, the

system has a control panel with an incremental input control. This is

connected to the computer through the control interface. To permit entry and

display of data, a CRT terminal is provided with the computer system. This

facilitates entry of orientation data and provides for display of data for

monitoring image digitizer system operation.

8.3 PHOTOGRAPH SCANNER/VIEWER UNIT

The stereo photograph scanners are contained in a single unit which rests

on an equipment cabinet the size of an office desk (see Figure 8-2). The unit

contains two 9 inch by 18 inch servo-controlled photograph XY stages, two line

array cameras, zoom optics for both cameras, and stereo viewing optics. The

photograph stages are of stage-on-stage design with round ways and ball

bushings. Optical encoders quantize X and Y motion to a precision of 2

micros. An accuracy of 5 micros rms Is achieved by applying corrections to

the serve outputs within the computer.

8-5

&

A

Serve-controlled zoom optics assemblies provide computer control of

scanning magnification over a 6:1 range. The zoom optics are based on a

commercial zoom microscope assembly adapted for servo control. The

magnification range of the scanner optics is about 0.43X to 2.6X for pixel

sizes in the range of 5 micros to 30 micros. The line array camera can be

rotated through + 20 degrees to permit scanning along the stereo baseline.

This rotation is also servo-controlled from the computer.

In addition to the scanning optics, a stereo viewing optical system is

provided for performing photograph interior orientation and locating conjugate

stereo imagery. The viewing optics consist of the optics from a Bausch and

Lomb stereo zoom transfer scope modified for use in the AFES Scanner system.

The viewing optics have image rotation and zoom magnification capabilities.

Magnification range is from 6X to 40X and maximum field of view is 30

millimeters. Optical reference marks for manually measuring photograph

positions are luminous marks multiplexed into the viewing optics at a point

immediately below the photograph stages. Photographs are mounted emulsion

down on the stage glass and are viewed arid scanned from below. Illumination

of the photographs is from the top. The illumination lamps are operated from

well regulated DC power supplies, one of which can be controlled by the

computer. As the scanner magnification is varied, the illumination level is

automatically adjusted by the computer to keep the line array camera operating

at its nominal output level.

To provide the requisite operator control functions for setup and

interior orientation, a control panel is mounted on the photograph

scanner/viewer unit in front of the operator. This panel contains a rate input

control for slewing the various scanner servos, and pushbuttens to control

servo power and for selecting the servo axis to be controlled. A busy lamp on

the panel signals the operator when the computer is engaged in performing a

scan and digitize operation and cannot respond to operator inputs.

8-7

8.4 GRAPHICS SCANNER/XY PLOTTER

The graphics scanner consists of a linear array camera mounted on the

drafting head of an XY plotter. The linear array is aligned with the X axis

of the plotter and cannot be rotated. Magnification of the scanner is fixed

at about 6X. This allows the 13 mm linear array to cover about 80 mm on the

map or feature manuscript. The optical axis of the camera is offset a

precisely known amount from the stylus chuck of the plotter. This allows the

stylus to be used as a reference pointer to the center of the image to be

scanned. Scanning is accomplished by moving the plotter at a constant

velocity in the Y direction while sampling and reading out image lines in the

X direction. The scanner scans and digitizes a complete 1024 by 1024 pixel

image in about 8 seconds.

Both transparent and opaque manuscripts can be scanned with the graphics

scanner. Front illumination is provided for scanning opaque manuscripts such

as maps. For transparent material, the backlighting of the plotting table is

used. A portable control panel allows the operator to manually central the

plotter servos at the plotter. This is used for set-up of map base or feature

graphics on the XY plotter.

8.5 LINE ARRAY CAMERAS

The basic photosensing device of the three scanners is a 1024 element

charge-coupled device (CCD) linear array. This device is an integrated

circuit containing charge-integrating photo sites and CCD analog shift

registers. The photo sites convert photons to electronic charge and integrate

the charge during an integration period. To read out the device, the charge

packets are all simultaneously transferred (in parallel) to two CCD analog

shift registers. The shift registers are then read out serially and their

outputs combined to obtain a single video output signal from the device.

8-8

In the AFES Scanner System, the array sensors are incorporated in

prepackaged linear array camera systems. The camera contains the necessary

circuitry for driving the array and sampling its output to produce a sampled

analog video signal at the output of the camera. Since the photometric

fidelity of the array is not by itself adequate for the AFES system, external

video processing circuitry is provided which corrects dark current and gain

variations across the array.

The photo sites of the array are 8 x 13 micros elements on 13 micros

centers with 5 micros channel stop bands between them. The array of 1024

elements is about 13 mm long. The geometric stability of the array is

excellent since the photo sites are fixed on the device substrate.

Dynamic range of the array device itself is typically 500:1. The camera

electronics, however, add some noise that reduces this range to a minimum of

200:1, or + 1 part in 400. Dynamic range is defined as the ratio of

saturation voltage to random output noise (peak-to-peak) on a per-cell basis.

Variations in dark current and gain from cell to cell generate noise which is

much greater than the random noise, but the dark current and gain effects can

be compensated and, therefore, do not limit dynamic range.

8.6 VIDEO PROCESSOR

Video signals from the scanners must be sampled and converted to 8-bit

binary data for storage and manipulation in the AFES system. Furthermore, the

photometric fidelity of data directly from the scanner, while perhaps suitable

for stereo viewing and map display, is not suitable for automatic feature

extraction. The individual elements in the sensor array exhibit different

dark current noise and sensitivity (gain) characteristics. These variations,

while repeatable for each element, are too large to obtain adequate

photometric resolution across the array. For images which are to be processed

by automatic feature extraction, the video data must, therefore, be further

processed to remove dark current and gain variation effects. It is also

8-9

desirable to obtain logarithmic as well as linear image data. The A/D

conversion, photometric correction, and log/linear transformation are all

performed by the video processing subsystem.

A diagram of the video processing subsystem is shown in Figure 8-3.

Video signals from the three linear array cameras enter the video select

circuitry where one of the three signals is selected as the video source. The

selected video is then amplified by a video amplifier to raise the signal

level and reject any common mode noise picked up as a result of transmission

from the camera to the video processor. The video is then sampled periodically

and converted to a 10-bit binary data stream. The sampling is performed

synchronously with serial readout of the array, so successive digital data

words correspond to outputs of successive sensor elements along the array. If

the image is to be used only for viewing, the image data may be stored

directly in the output buffer. If the image is to be processed by automatic

feature extraction, corrections are made to the individual image data words.

As shown in Figure 8-3, the output of the A/D converter is applied to

summing circuitry where an 8-bit value is subtracted to correct for dark

current. Each cell of the 1K by 8 random access memory (RAM) contains a dark

signal correction value for one element of the sensor array. After dark

signal correction, the image data is corrected for variations in gain of the

individual elements. This is done by multiplying each data sample by a gain

factor. Each cell of a 1K by 9 RAM contains a gain correction factor for one

array element.

The output of the multiplier is a stream of 10 bit data words. This data

can be either stored directly as 8-bit words in the output buffer or applied

to a log transform random access memory (RAM). If the RAM is bypassed, the

output data is a linear function of photograph transmission. If the output

data is obtained from the transform RAM, a logarithmic response is obtained.

Since the RAM can implement almost any mapping, other rather arbitrary

functions can be implemented by loading the transform RAM with data for the

8-10

30 - w

IBM
ulJ

desired transformation.

The output buffer RAM collects the image data during readout and

processing of one line of image data. Successive processed image data samples

are stored in successive locations in the buffer. When the line is completed,

the scanner control computer initiates a direct memory access (DMA) transfer

of the buffer contents into the computer memory. To provide better storage

efficiency and higher speed of transfer, the data is packed by transferring

two successive 8-bit samples as one 16-bit word over the PDP-11/34 UNIBUS.

Because the optical systems of the scanners introduce geometric

distortions, corrections must be made to the image data to obtain good

geometric linearity. This is accomplished by applying small corrections to

the output buffer memory address references during readout. The corrections

are stored in a geometric correction RAM and are added to the memory address

of the output buffer RAM. The corrections are only applied when the image

data is read out; all other data transfers to and from the buffer RAM use the

normal sequential addressing. All RAMs in the video processor can be loaded

and read from the computer through the DMA transfer device. The video

processor memories can, therefore, be modified during system operation. The

video processor can also be tested for proper operation by transferring test

data to and from the various RAMs in the video processor. Modification of RAM

contents during system operation is used in automatic calibration procedures.

8.7 COMPUTER CONTROL SYSTEM

The control computer and its peripherals comprise a major part of the

system. The various control sequences, computations, and data transfers

necessary to implement the various functions of the system are performed by

the control computer under the direction of its stored programs. The computer

is a PDP 11/34 with 32K words of memory and a floating point processor.

Peripherals include a CRT terminal, floppy disk unit, DMA transfer interface,

RPO6 dual access mass storage disk unit, and a special control interface. The

8-12

CRT terminal is used primarily for operator interaction with the system. It

allows the operator to enter and display data, select modes of operation, and

initiate various functions of the system. The floppy disk unit is used to

read programs from a permanent storage medium during system startup. The DMA

transfer interface is used to transfer blocks of data between the computer

memory and the various RAMs of the video processor. The RPO6 dual access disk

unit is used to store image data for transfer to the PDP-11/70 AFES computer

system. During image scanning and digitizing, image data is written into the

RPO6 on a line-by-line basis. When a complete image is digitized and stored

on the disk, the PDP-11/70 computer reads out the data by way of the other

disk access port.

The control interface unit contains parallel input/output (I/O) and serve

control hardware to allow the computer to control the three scanners and the

video processor. Serve control exercised by the computer includes the two

axes of each photo stage, the X and Y axes of the graphics scanner, the

magnification optics, and the rotation optics. Limit switches on the various

servo systems are sensed through the parallel input hardware of the interface.

Parallel I/O hardware is used to control and sense status of the video

processor. In addition, an operator control panel is serviced through

parallel 1/0 hardware of the interface unit.

The various functional capabilities of the stereo image digitizer system

are implemented primarily by the computer programs. These programs respond to

inputs from either the operator or the 11/70 computer and perform the various

programmed functions of the system. They generate motion commands for the

servo travel, and take appropriate remedial action. During the performance of

the various system functions, the programs control the sequences of operations

and the flow of data through the system.

8-13

MISSION
Of

Rom Air Development Center
RADC ptanAa cnd executeA xwA auct, devetopment, test and
ae-Wted acu4J.2tiOn ptQWgo3 in .6uppott 06 Commawnd, Contot
COMWionU0 and Intettgenee (C31)I aectUe6. Teehn.at
cznd enginee.'tg Uppo't~t ui9tkn aLea.6 otUe a competene
4A& p~tovided to ESP ptogum oijicu (PO,6) and otheL ES
etemenUt. The p&6iiW~a teen.zcat mion a4ea6 a~te
oW"ieaU o., eLtfomagneticz gtudance and e~nto, Awu-
veittapwe 06 gkownd and ae.40apace objeat, .intettigence data
cUe~>on and handUng, injo~nation 6y,6temn tedwotogy,iZnaaPhLiec pkopagadton, 6otid 6tate &acienee6, mjd~ojkvue
PhgYrieh and eJtect~onie 4e.Uabititg, ulainwaubitity and

